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koja je uvijek tu da mi pomogne oko raznih matematičkih ili ne tako matematičkih problema, i koja uvijek
uspije svaku situaciju pretvoriti u radost i smijeh; mojim roditeljima Ljiljani i Jovanu, koji su mi usadili
veliko znanje i uvijek su bili tu za mene, u svakoj životnoj situaciji; baki Slavici, koja kuha najbolju kavu,
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Chapter 1

Introduction

In the 18th century, it became clear that the existing elementary functions are not sufficient to
describe a number of unsolved problems in various branches of mathematics and physics. Functions
that describe the new results were generally presented in the form of infinite series, integrals, or as

solutions of differential equations. Some of them appeared more frequently, and because of the easier
use, they were named, for example, Gamma, Beta function, Bessel functions, etc. That functions are
collectively called special functions. One of the first issues about special functions is the set of four books,
published between 1893 and 1902:

• J. Tannery, N. Molk, Éléments de la théorie des fonctions elliptiques I, II: Calcul differentiel I,
II. Applications, Paris: Gauthier-Villars, 1893, 1896.

• J. Tannery, N. Molk, Éléments de la théorie des fonctions elliptiques III, IV: Calcul integral I,
II, Paris: Gauthier-Villars, 1898, 1902.

that a total of 1148+ XXXII pages long and contains previously known formulae with special func-
tions.

A large part of this thesis deals with the integral representations and inequalities related to Bessel
functions. G. N. Watson [130], in 1922, published the book, A Treatise on the Theory of Bessel Functions,
which contains a wide range of results about Bessel functions, and had been useful to us, to obtain our
own results.

There are three functional series with members containing Bessel functions of the first kind:

• Neumann series, i.e. the series in which order of the Bessel function of the first kind contains the
current index of summation

Nµ(z) :=

∞∑
n=1

αnJµ+n(z), z ∈ C . (1.1)

Neumann series are named after the German mathematician Carl Gottfried Neumann [73], who
in his book Theorie der Besselschen Funktionen, in 1867, studied only their special cases, namely

1



Chapter 1. Introduction 2

those of integer order. A few years later, in 1887, Leopold Bernhard Gegenbauer [32, 33] expanded
these series, having order the whole real line.

Neumann series are widely used. Especially interesting are the Neumann series of the zero–order
Bessel function, i.e. series N0, which appears as a relevant technical tool to solve the problem of
infinite dielectric wedge through the Kontorovich–Lebedev transformation. It also occurs in the
description of internal gravity waves in Bussinesq fluid, and in defining the properties of diffracted
light beams. Wilkins [131] discussed the question of existence of an integral representation for a
special Neumann series; Maximon [66] in 1956 represented a simple Neumann series Nµ appearing
in the literature in connection with physical problems. Y. L. Luke [61] studied, in 1962, integral
representation of Neumann series, for µ = 0 and very recently Pogány and Süli [95] derived an
integral representation of Neumann series Nµ(x), which approach helped us in performing a large
number of results.

If we replace Jµ in (1.1) by modified Bessel function of the first kind Iµ, Bessel functions of
the second kind Yµ, Kµ (called Basset–Neumann and MacDonald functions, respectively), Hankel
functions H(1)

µ , H
(2)
µ (or Bessel functions of the third kind) we get so–called modified Neumann

series.

Neumann series, and also modified Neumann series will be discussed in Chapter 3.

• Kapteyn series are the series where the order of the Bessel function, and also the argument contains
index of summation:

Kµ(z) :=

∞∑
n=1

αnJn ((µ+ n)z) , z ∈ C .

Such series were introduced in 1893, by Willem Kapteyn [47], in his article Recherches sur les
functions de Fourier-Bessel. These series have great applications in problems of mathematical
physics. For example, a solution of famous Kepler’s equation can be explicitly expressed by Kapteyn
series of the first kind. Their application can be found in problems of pulsar physics, electromagnetic
radiation, etc. There are also Kapteyn series of the second kind, which have been studied, in details,
by Nielsen [79, 80], in 1901, and that series consist of the product of two Bessel functions of the
first kind, of different orders. In 1906 Kapteyn [46] proved that every analytic function can be
developed in Kapteyn series of the first kind. In Chapter 4, we will derive results related to this
series.

• Schlömilch series appear when the argument contains the current index of summation, i.e. the
series of the form:

Sµ(z) :=

∞∑
n=1

αn Jµ ((µ+ n)z) , z ∈ C .

Oscar Xaver Schlömilch [109] was the first who defined that series, in 1857, in the article Über die
Bessel’schen Function, but he looked only at cases when the series contains of Bessel functions of
the first kind, of order µ = 0, 1. Their use is so widespread in the field of physics, such as the
use of Kapteyn series. Rayleigh [99], in 1911, pointed out that in the case µ = 0 these series are
useful in the study of periodic transverse vibrations of two–dimensional membranes. Generalized
Schlömilch series appeared in the Nielsen’s memoirs [74, 75, 76, 77, 78, 79, 80] from 1899, 1900
and 1901. Filon [29] in 1906 first studied the possibility of development of arbitrary function in
generalized Schlömilch series. Integral representations for that series are established in Chapter 5.
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In this thesis we also deal with Hurwitz–Lerch Zeta function, which is discussed in Chapter 6.

A general Hurwitz–Lerch Zeta function Φ(z, s, a) is first defined by Erdélyi, Magnus, Oberhettinger and
Tricomi, in 1953 (see, e.g. [28, p. 27, Eq. 1.11 (1)]):

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s
,

where a ∈ Z\Z−
0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1 and contains a whole number of

special functions, as special cases, such as Riemann Zeta function ζ(s), Hurwitz (or generalized) Zeta
function ζ(s, a), Lerch Zeta function `s(ξ), Polylogarithmic and Lipschitz–Lerch Zeta functions and their
generalizations that were observed by Goyal and Laddha [34], Garg, Jain and Kalla [30, 31], Lin and
Srivastava [60], etc., starting from 1997, till now.

Extended general Hurwitz–Lerch Zeta function was introduced in article

• M. Garg, K. Jain, S. L. Kalla, A further study of general Hurwitz–Lerch Zeta function,
Algebras Groups Geom. 25(3) (2008), 311–319.

in the following form:

Φα,β;γ(z, s, r) =

∞∑
n=0

(α)n(β)n

(γ)nn!

zn

(n+ r)s
,

where γ, r 6∈ Z−
0 , s ∈ C,<(s) > 0 when |z| < 1 and <(γ+ s− α− β) > 0 when |z| = 1.

Our main aim is to determine the integral representations, and two–sided inequalities for the extended
general Hurwitz–Lerch Zeta function, as well as for the extended Hurwitz–Lerch Zeta function.

E. L. Mathieu [65], 1890, studied the so–called Mathieu series. These series and their many general-
izations, have become the subject of many investigations in recent years. In our work we use Mathieu
(a,λ)–series, which was introduced in 2005, by Pogány [91], in response to an open question, posed by
Feng Qi [96], four years before.

In integral representation of extended general Hurwitz–Lerch Zeta function, we will use Mathieu (a,λ)–
series, first time mentioned in the article

• T. K. Pogány, Integral representation of Mathieu (a,λ)–series, Integral Transforms Spec. Funct.
16(8) (2005), 685–689.

Inequalities and integral representations of Mathieu series were also studied by Cerone and Lenard [15],
in 2003, Qi [96], in 2001, Srivastava and Tomovski [121], in 2004 and Pogány et al. [94], in 2006, while
multiple Mathieu (a,λ)–series were considered by Draščić Ban [23, 24], in her doctoral dissertation,
in 2009, and in one article, in 2010. In this thesis are used some Pogány’s integral representation for
(a,λ)–series, for deriving some new inequalities for the extended Hurwitz–Lerch Zeta function.

Then, by using the above described integral representation, we shall derive two newly, two-sided inequal-
ities for the extended general Hurwitz–Lerch Zeta function.

As a generalization, in the dissertation is also examined the extended Hurwitz–Lerch Zeta function,
Φ

(ρ,σ)
λ;µ (z, s, a), which can be found in the article
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• H. M. Srivastava, R. K. Saxena, T. K. Pogány, R. Saxena, Integral and computational
representations of the extended Hurwitz–Lerch Zeta function, Integral Transforms Spec. Funct. 22

(2011), 487–506.

and it is obtained by introducing Fox-Wright generalized hypergeometric functions in the kernel of
Hurwitz–Lerch Zeta function:

Φ
(ρ,σ)
λ;µ (z, s, a) = Φ

(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a) :=

∞∑
n=0

p∏
j=1

(λj)nρj

n!
q∏
j=1

(µj)nσj

zn

(n+ a)s
.

Here p, q ∈ N0; λj ∈ C, j = 1, · · · , p; a, µj ∈ C\Z−
0 , j = 1, · · · , q; ρj, σk ∈ R+, j = 1, · · · , p; k = 1, · · · , q;

∆ > −1 when s, z ∈ C; ∆ = −1 and s ∈ C when |z| < ∇; ∆ = −1 and <(Ξ) > 1
2 when |z| = ∇, where

∆ :=

q∑
j=1

σj −

p∑
j=1

ρj > −1 , ∇ :=

 p∏
j=1

ρ
−ρj
j

 q∏
j=1

σ
σj
j

 and Ξ := s+

q∑
j=1

µj −

p∑
j=1

λj +
p− q

2
.

It is worth to mention that until now there were not known inequalities for the Hurwitz–Lerch Zeta
function.

At the end of the Chapter 6, we will define certain new incomplete generalized Hurwitz–Lerch Zeta
functions and incomplete generalized Gamma functions and we shall also investigate their important
properties.

Remark 1.1. It is important to mention that some useful labels, which can be found in this chapter,
are described at the beginning of the next chapter, in Section 2.1. �

Some results of these dissertation have been published, or accepted for publication in the form of the
following articles:

• Á. Baricz, D. Jankov, T.K. Pogány, Integral representations for Neumann-type series of Bessel
functions Iν, Yν and Kν, Proc. Amer. Math. Soc. (2011) (to appear).

• Á. Baricz, D. Jankov, T. K. Pogány, Integral representation of first kind Kapteyn series, J.
Math. Phys. 52(4) (2011), Art. 043518, pp. 7.

• Á. Baricz, D. Jankov, T. K. Pogány, On Neumann series of Bessel functions, Integral Trans-
forms Spec. Funct. (2011) (to appear).

• D. Jankov, T. K. Pogány, R. K. Saxena, An extended general Hurwitz–Lerch Zeta function
as a Mathieu (a, λ) – series, Appl. Math. Lett. 24(8) (2011), 1473–1476.

• D. Jankov, T. K. Pogány, E. Süli, On the coefficients of Neumann series of Bessel functions,
J. Math. Anal. Appl. 380(2) (2011), 628–631.

• R. K. Saxena, T. K. Pogány, R. Saxena, D. Jankov, On generalized Hurwitz-Lerch Zeta
distributions occuring in statistical inference, Acta Univ. Sapientiae Math. 3(1) (2011), 43–59.
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• H. M. Srivastava, D. Jankov, T. K. Pogány, R. K. Saxena, Two-sided inequalities for the
extended Hurwitz–Lerch Zeta function, Comput. Math. Appl. 62(1) (2011), 516–522.

The most important parts of the dissertation were exposed at the Seminar on Optimization and Ap-
plications in Osijek, and on the Seminar on Inequalities and Applications, in Zagreb, in 2011 (in three
occasions).

A part of the dissertation, about generalized Hurwitz-Lerch Zeta distribution, was held at the Second
Conference of the Central European Network, in Zürich, 2011.



Chapter 2

Basic definitions

Before stating the main results of this thesis, we outline the basic concepts, definitions and results
which would be necessary in proving our own findings. Let us first introduce some useful labels.

2.1 Some useful labels

Below, we would need some usual labels like

• N = {1, 2, 3, . . . }, which is the set of natural numbers and

• N0 = N ∪ {0}.

• Z = {. . . ,−2,−1, 0, 1, 2, . . . } stands for the set of all integers and

• Z−
0 = {. . . ,−2,−1, 0}, Z+

0 = {0, 1, 2, . . . }.

Further, R, R+ and C stand for the sets of real, positive real and complex numbers, respectively.

Throughout in this thesis, by convention, [a] and {a} = a− [a] denote the integer and fractional part of
some real number a, respectively.

We would also use a symbol for the imaginary unit i, which is defined solely by the property that its
square is −1, i.e. i =

√
−1.

It is important to mention, that we will use symbol � for the end of the proof, and � for the end of the
Remark.

2.2 The Gamma function

The Gamma function has caught the interest of some of the most prominent mathematicians of all times.
Its history, notably documented by Philip J. Davis in an article that won him the Chauvenet Prize, in
1963, reflects many of the major developments within mathematics since the 18th century. In his article

6



Chapter 2. Basic definitions 7

• P. J. Davis, Leonhard Euler’s integral: A historical profile of the gamma function, Amer. Math.
Monthly 66(10) (1959), 849-869.

Davis wrote: ”Each generation has found something of interest to say about the Gamma function. Per-
haps the next generation will also”.

In this section, we study major properties of the Gamma function and introduce some other functions
which can be expressed in terms of the Gamma function, namely Psi and Beta function and also the
Pochhammer symbol.

Gamma function is defined by a definite integral due to Leonhard Euler

Γ(z) =

∫∞
0

e−t tz−1dt , <(z) > 0 . (2.1)

The notation Γ(z) is due to French mathematician Adrien–Marie Legendre.

Using integration by parts, from (2.1) we can easily get

Γ(z) =
Γ(z+ 1)

z
, z > 0 . (2.2)

That relation is called the recurrence formula or recurrence relation of the Gamma function. For z =

n ∈ N, from (2.2) it follows that
Γ(n) = (n− 1)! .

The recurrence relation is not the only functional equation satisfied by the Gamma function. Another
important property is the reflection formula

Γ(z)Γ(1− z) =
π

sin (πz)

which gives relation between the Gamma function of positive and negative numbers.

For z = 1
2 , from the previous equation, it follows that

Γ

(
1

2

)
=
√
π .

In examining the convergence conditions of corresponding series of Bessel functions of the first kind, we
would need the formula for asymptotic behavior of the Gamma function, for large values of z:

Γ(z) =
√
2πe−zzz−1/2

(
1+O

(
1

z

))
, z > 0 , (2.3)

such that usually write
Γ(z) ∼

√
2πe−zzz−1/2, |z|→∞ .

In (2.3) we have familiar so–called order symbol O.

Gamma function also has the following properties (see [98, p. 9]):
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• Γ(z) is analytic except at nonpositive integers, and when z =∞;

• Γ(z) has a simple pole at each nonpositive integer, z ∈ Z−
0 ;

• Γ(z) has an essential singularity at z =∞, a point of condensation of poles;

• Γ(z) is never zero, because 1/Γ(z) has no poles.

2.2.1 Psi (or Digamma) function

Psi (or Digamma) function ψ(z) is defined as the logarithmic derivative of the gamma function:

ψ(z) :=
d
dz

{log Γ(z)} =
Γ ′(z)

Γ(z)
or log Γ(z) =

∫z
1

ψ(t) dt .

We can express ψ(z) [1, Eq. (6.3.16)] as follows (see also [115, p. 14, Eq. 1.2(3)]:

ψ(z) =

∞∑
k=1

(
1

k
−

1

z+ k− 1

)
−C , z ∈ C \ Z−

0 ,

where C denotes the celebrated Euler-Mascheroni constant given by

C := lim
n→∞ (Hn − logn) ≈ 0.5772 ,

where Hn are called the harmonic numbers defined by

Hn :=

n∑
k=1

1

k
, n ∈ N.

Finally, let us remark that the Digamma function ψ(x) increases on its entire range and possesses the
unique positive nil α0 = ψ−1(0) ≈ 1.4616. One of the useful properties of the Digamma function is that

ψ(z+ 1) =
1

z
+ψ(z), z > 0 .

2.2.2 The Beta function

The Beta function, also called the Euler integral of the first kind, is a special function defined by

B(x, y) =

∫1
0

tx−1(1 − t)y−1 dt, <(x), <(y) > 0 .

The Beta function is intimately related to the Gamma function, which is described in [98, p. 18]:

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
, <(x), <(y) > 0 . (2.4)
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Using (2.4) it easily follows that Beta function is invariant with respect to parameter permutation,
meaning that

B(x, y) = B(y, x) .

2.2.3 The Pochhammer symbol

The Pochhammer symbol (or the shifted factorial), introduced by Leo August Pochhammer, is defined,
in terms of Euler’s Gamma function, by

(λ)µ :=
Γ(λ+ µ)

Γ(λ)
=

1, if µ = 0; λ ∈ C \ {0}

λ(λ+ 1) · · · (λ+ n− 1), if µ = n ∈ N; λ ∈ C
,

it being understood conventionally that (0)0 := 1.

The Pochhammer symbol also satisfies

(−λ)µ = (−1)µ (λ− µ+ 1)µ , µ ∈ N0 . (2.5)

2.3 Dirichlet series

One of our main mathematical tools is the series

Da(s) :=

∞∑
n=1

ane
−λns , s > 0 , (2.6)

where
0 < λ1 < λ2 < · · · < λn →∞ as n→∞ .

That are Dirichlet series on the λn–type. For λn = n, (2.6) becomes power series

Da(s) :=

∞∑
n=1

ane
−ns , s > 0

and for λn = lnn, we have series of the form

Da(s) :=

∞∑
n=1

ann
−s , s > 0 ,

which is called ordinary Dirichlet series.

In this thesis we mostly deal with series of the form (2.6), where s is real variable. We also need a variant
of closed integral form representation of Dirichlet series, which is derived below, following mainly [39],
[48C. §V]. The heart of the matter is the known Stieltjes integral formula

∫b
a

f(x)dAs(x) =

∞∑
n=1

f(λn)(As(λn+) −As(λn−)), (2.7)
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such that is valid for As-integrable f, where the step function

As(x) :=
∑

n: λn≤x

(As(λn+) −As(λn−)) (2.8)

possesses the discontinuity set {λn}. Assuming that λ(x) is monotone increasing positive function such
that runs to the infinity with growing x and it is {λn}n∈N = λ(x)

∣∣
N, we deduce that λ is invertible with

the unique inverse λ−1. Now, putting an =: As(λn+) −As(λn−) into (2.8) we get

As(x) =
∑

n: λn≤x

an =

[λ−1(x)]∑
n=1

an.

Here As(x) is the function such that has jump of magnitude an at λn, n ∈ N. So, taking f(x) = e−sx

having in mind that [a, b] = [0, x], by (2.7) we deduce

∑
n: λn≤x

ane
−λns =

∫x
0

e−s tdAs(t). (2.9)

Letting x→∞ in (2.9) we obtain an integral such that is equiconvergent with Da(s), so

∞∑
n=1

ane
−λns =

∫∞
0

e−s tdAs(t) , s > 0 . (2.10)

Now, the integration by part results in a Laplace integral instead of the Laplace–Stieltjes integral (2.10).
Indeed, as e−sx decreases in x being s positive, taking a(0) = 0, the convergence of the Laplace–Stieltjes
integral (2.10) ensures the validity of the desired relation

Da(s) = s

∫∞
0

e−s tAs(t)dt , s > 0 . (2.11)

2.3.1 Euler–Maclaurin summation formula

Euler-Maclaurin formula provides a powerful connection between integrals and sums. It can be used
to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using
integrals and the machinery of calculus.

The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler
needed it to compute slowly converging infinite series, while Maclaurin used it to calculate integrals.
Their famous summation formula, of the first degree is

l∑
n=k

an =

∫ l
k

a(x)dx+
1

2
(al + ak) +

∫ l
k

a ′(x)B1(x) dx,
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where B1(x) = {x} − 1
2 is the first degree Bernoulli polynomial. It generally holds [34, p. 72, Eq. (1)]

∑̀
n=k

f(n) =

∫ `
k

f(x)dx+ 1
2

(
f(k) + f(`)

)
+

m∑
j=1

B2j

(2j)!

(
f(2j−1)(`) − f(2j−1)(k)

)
−

∫ `
k

B2m(x)

(2m)!
f(2m)(x) dx , m ∈ N,

where Bp(x) = (x + B)p, 0 ≤ x < 1 represents Bernoulli polinomial of order p ∈ N, while Bk are
appropriate Bernoulli numbers. On [`, `+ 1), ` ∈ N, Bp(x) are periodic with period 1.

Summation formulae, of the first kind (p = 1) we will use in condensed form, under the condition
a ∈ C1[k, l], k, l ∈ Z, k < l:

l∑
n=k+1

an =

∫ l
k

(a(x) + {x}a ′(x))dx ≡
∫ l
k

dxa(x) dx , (2.12)

where
dx := 1+ {x}

∂

∂x
,

see [94, 95].

Finally, assuming that a := a(x)
∣∣
N, a ∈ C

1[0,∞) we summ up As(t) by the Euler-Maclaurin formula
completing the desired closed form integral representation of Dirichlet series Da(s) without any sums.

The articles [89, 90, 91] contain certain special cases of (2.11) specifying an = 1; λ, a are powers of the
same monotonous increasing sequence etc.

The multiple Euler–Maclaurin summation formulae are discussed in detail e.g. in [23].

2.4 Mathieu (a,λ)–series

The so–called Mathieu (a,λ)–series

Ms(a,λ; r) =

∞∑
n=0

an

(λn + r)s
, r, s > 0 , (2.13)

has been introduced by Pogány [89], giving an exhaustive answer to an Open Problem posed by Qi
[96], deriving closed form integral representation and bilateral bounding inequalities for Ms(a,λ; r),
generalizing at the same time some earlier results by Cerone and Lenard [15], Qi [96], Srivastava and
Tomovski [121] and others.

The mentioned Pogány’s integral representation formula for Mathieu (a,λ)–series is [89, Theorem 1]:

Ms(a,λ; r) =
a0

rs
+ s

∫∞
λ1

∫ [λ−1(x)]

0

a(u) + a ′(u){u}

(r+ x)s+1
dx du , (2.14)

where a ∈ C1[0,∞) and a
∣∣
N0
≡ a, λ−1 stands for the inverse of λ and the series (2.13) converges.
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The series (2.13) is assumed to be convergent and the sequences a := (an)n∈N0 ,λ := (λn)n∈N0 are
positive. Following the convention that (λn) is monotone increasing divergent, we have

λ : 0 ≤ λ0 < λ1 < · · · < λn −−−−→
n→∞ ∞ .

2.5 Hypergeometric and generalized hypergeometric functions

Hypergeometric functions form an important class of special functions. They were introduced in 1866,
by C. F. Gauss and after that have proved to be of enormous significance in mathematics and the
mathematical sciences elsewhere. Here, we describe some properties of hypergeometric functions which
are useful for us to derive some of our main results.

2.5.1 Gaussian hypergeometric function

Gaussian hypergeometric function is the power series

2F1(a, b; c; z) =

∞∑
k=0

(a)k (b)k

(c)k

zk

k!
= 1+

ab

c
z+

a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2
+ . . . , (2.15)

where z is a complex variable, a, b and c are real or complex parameters and (a)k is the Pochhammer
symbol.

The series is not defined for c = −m, m ∈ N0, provided that a or b is not the negative integer n such
that n < m. Furthermore, if the series (2.15) is defined but a or b is equal to (−n), n ∈ N0, then
it terminates in a finite number of terms and its sum is then the polynomial of degree n in variable z.
Except for this case, in which the series is absolutely convergent for |z| < ∞, the domain of absolute
convergence of the series (2.15) is the unit disc, i.e. |z| < 1. In this case it is said that the series (2.15)
defines the Gaussian or hypergeometric function

g(z) = 2F1(a, b; c; z). (2.16)

Also, on the unit circle |z| = 1, the series in (2.15) converges absolutely when <(c−a−b) > 0, converges
conditionally when −1 < <(c−a−b) ≤ 0 apart from at z = 1, and does not converge if <(c−a−b) ≤ −1.

It can be verified [113, p. 6] that the function g(z) is the solution of the second order differential equation

z(1− z)g′′(z) + (c− (a+ b+ 1)z)g′(z) − abg(z) = 0, (2.17)

in the region |z| < 1. However, the function (2.16) can be analytically continued to the other parts of
the complex plane, i.e. solutions of the equation (2.17) are also defined outside the unit circle. These
solutions are provided by following substitutions in the equation (2.17):

• substitution z = 1− y yields solutions valid in the region |1− z| < 1,

• substitution z = 1/y yields solutions valid in the region |z| > 1.
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2.5.2 Generalized hypergeometric function

For bi (i = 1, 2, . . . , q) non negative integers or zero, the series

∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
=

∞∑
n=0

∏p
j=1(aj)n∏q
j=1(bj)n

zn

n!

is called a generalized hypergeometric series (see [69]) and is denoted by the symbols

pFq[z] = pFq[(ap); (bq)|z] = pFq

[ a1, · · · , ap
b1, · · · , bq

∣∣∣ z] .
When p ≤ q, the generalized hypergeometric function converges for all complex values of z; thus, pFq[z]
is an entire function. When p > q+ 1, the series converges only for z = 0, unless it terminates (as when
one of the parameters ai is a negative integer) in which case it is just a polynomial in z. When p = q+1,
the series converges in the unit disk |z| < 1, and also for |z| = 1 provided that

<

(
q∑
i=1

bi −

p∑
i=1

ai

)
> 0 .

The complex members of the sequences (ap), (bq) are called parameters and z is the argument of the
function.

2.5.3 Fox–Wright generalized hypergeometric function

In this thesis, we also need the Fox-Wright generalized hypergeometric function pΨ∗q[·] with p numerator
parameters a1, · · · , ap and q denominator parameters b1, · · · , bq, which is defined by [49, p. 56]

pΨ
∗
q

[ (a1, ρ1), · · · , (ap, ρp)
(b1, σ1), · · · , (bq, σq)

∣∣∣ z] =

∞∑
n=0

p∏
j=1

(aj)ρjn

q∏
j=1

(bj)σjn

zn

n!
, (2.18)

where aj, bk ∈ C and ρj, σk ∈ R+, j = 1, · · · , p; k = 1, · · · , q. The defining series in (2.18) converges in
the whole complex z-plane when

∆ :=

q∑
j=1

σj −

p∑
j=1

ρj > −1 ; (2.19)

when ∆ = 0, then the series in (2.18) converges for |z| < ∇, where

∇ :=

 p∏
j=1

ρ
−ρj
j

 q∏
j=1

σ
σj
j

 . (2.20)

If, in the definition (2.18), we set ρ1 = · · · = ρp = 1 and σ1 = · · · = σq = 1, we get generalized
hypergeometric function pFq[·].
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2.6 Bessel differential equation

The Bessel differential equation is the linear second–order ordinary differential equation given by

x2
∂2y

∂x2
+ x

∂y

∂x
+ (x2 − ν2)y = 0 , ν ∈ C . (2.21)

The solutions to this equation define the Bessel function of the first kind Jν and Bessel function of the
second kind Yν. The equation has a regular singularity at zero, and an irregular singularity at infinity.

The function Jν(x) is defined by the equation

Jν(x) =

∞∑
m=0

(−1)m

m!Γ(m+ ν+ 1)

(x
2

)2m+ν

.

For ν /∈ Z, functions Jν(x) i J−ν(x) are linearly independent, and so the solutions of differential equation
(2.21) are independent, while for ν ∈ Z it holds

J−ν(x) = (−1)νJν(x).

Bessel functions of first kind, which were introduced by the Swiss mathematician Daniel Bernoulli, 1740,
in his paper Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum
et catenae verticaliter suspensae, represent the general solution of the homogeneous Bessel differential
equation of the second degree. Alexandre S. Chessin [13, 14] was a first who gave an explicit solutions
of Bessel differential equation with general nonhomogeneous part, in 1902.

We are also interested in estimates for Bessel function of the first kind. Landau [53] gave the following
bounds for Bessel function Jν(x):

|Jν(x)| ≤ bLν−1/3, bL :=
3
√
2 sup
x∈R+

(
Ai(x)

)
(2.22)

and
|Jν(x)| ≤ cL|x|−1/3, cL := sup

x∈R+

x1/3
(
J0(x)

)
, (2.23)

where Ai(x) stands for the familiar Airy function, which is solution of differential equation

y ′′ − xy = 0, y = Ai(x)

and can be expressed as

Ai(x) :=
π

3

√
x

3

(
J−(1/3)

(
2 (x/3)

3/2
)

+ J1/3

(
2 (x/3)

3/2
))

.

Olenko [85] also gave sharp upper bound for Bessel function:

sup
x≥0

√
x|Jν(x)| ≤ bL

√
ν1/3 +

α1

ν1/3
+
3α21
10ν

=: d0 , ν > 0,

where α1 is the smallest positive zero of Airy’s function Ai(x), and bL is the first Landau’s constant.
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There is also Krasikov’s [50] uniform bound:

J2ν(x) ≤
4(4x2 − (2ν+ 1)(2ν+ 5))

π((4x2 − µ)3/2 − µ)
, x >

√
µ+ µ2/3 , ν > −1/2 (2.24)

where µ = (2ν+ 1)(2ν+ 3). This bound is sharp in the sense that

J2ν(x) ≥
4(4x2 − (2ν+ 1)(2ν+ 5))

π((4x2 − µ)3/2 − µ)

in all points between two consecutive zeros of Bessel function Jν(x) [50, Theorem 2]. Krasikov also
pointed out that estimations (2.22) and (2.23) are sharp only for values that are in the neighborhood of
the smallest positive zero jν,1 of the Bessel function Jν(x), while his estimate (2.24) gives sharp upper
bound in whole area.

Pogány and Srivastava [118, p. 199, Eq. (19)] proposed a better, hybrid estimator:

|Jν(x)| ≤Wν(x) :=
dO√
x
χ(0,Aλ](x) +

√
Kν(x)

(
1− χ(0,Aλ](x)

)
,

where

Kν(x) :=
4(4x2 − (2ν+ 1)(2ν+ 5))

π((4x2 − µ)3/2 − µ)
,

while
Aλ =

1

2

(
λ+ (λ+ 1)2/3

)
.

In this thesis, we shall use Landau’s bounds, because of their simplicity. Derived results one can expand
using hybrid estimator Wν as well.

Further, exponential bounding inequalities for Jν(x) are published by Pogány [92] and Sitnik [112].

2.7 The Struve function

In determining the integral representation of the second kind Neumann series Xν(z), which will be
introduced in Chapter 3, (3.27), we need the less mentioned Struve function. Struve function Hν(z), of
order ν, is defined by the relations [130, p. 328]

Hν(z) =
2
(
z
2

)ν
√
πΓ(ν+ 1

2 )

∫1
0

(1− t2)ν− 12 sin (zt) dt

=
2
(
z
2

)ν
√
πΓ(ν+ 1

2 )

∫ 1
2π

0

sin (z cos θ) sin2ν θ dθ ,

provided that <(ν) > −12 .

It also holds

Hν(z) =

∞∑
n=0

(−1)n
(
z
2

)ν+2n+1

Γ(n+ 3
2 )Γ(ν+ n+ 3

2 )
.

The function Hν(z) is defined by this equation for all values of ν, whether <(ν) exceeds −12 or not.
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2.8 Fractional differintegral

In order to solve the nonhomogeneous Bessel differential equation, we will use fractional derivation and
fractional integration, i.e. fractional differintegration.

So, let us first introduce, according to [58, p. 1488, Definition], the fractional derivative and the fractional
integral of order ν of some suitable function f, see also [59, 127, 128, 129].

If the function f(z) is analytic (regular) inside and on C := {C−, C+}, where C is a contour along the
cut joining the points z and −∞ + i={z}, which starts from the point at −∞, encicles the point z once
counter–clockwise, and returns to the point at −∞, C+ is a contour along the cut joining the points
z and ∞ + i={z}, which starts from the point at ∞, encircles the point z once counter–clockwise, and
returns to the point at ∞,

fµ(z) = (f(z))µ :=
Γ(µ+ 1)

2πi

∫
C

f(ζ)

(ζ− z)µ+1
dζ

for all µ ∈ R \ Z−; Z− := {−1,−2,−3, · · · } and

f−n(z) := lim
µ→−n

(
fµ(z)

)
µ
, n ∈ N,

where ζ 6= z,
−π ≤ arg(ζ− z) ≤ π , for C−,

and
0 ≤ arg(ζ− z) ≤ 2π , for C+,

then fµ(z), µ > 0 is said to be the fractional derivative of f(z) of order µ and fµ(z), µ < 0 is said to be
the fractional integral of f(z) of order −µ, provided that

|fµ(z)| <∞, µ ∈ R.

At this point let us recall that the fractional differintegral operator (see e.g. [82, 83, 58])

• is linear, i.e. if the functions f(z) and g(z) are single–valued and analytic in some domain Ω ⊆ C,
then

(k1f(z) + k2g(z))ν = k1fν(z) + k2gν(z) , ν ∈ R, z ∈ Ω

for any constants k1 and k2;

• preserves the index law: If the function f(z) is single–valued and analytic in some domain Ω ⊆ C,
then

(fµ(z))ν = fµ+ν(z) = (fν(z))µ ,

where fµ(z) 6= 0, fν(z) 6= 0, µ, ν ∈ R, z ∈ Ω;
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• permits the generalized Leibniz rule: If the functions f(z) and g(z) are single–valued and analytic
in some domain Ω ⊆ C, then

(f(z) · g(z))ν =

∞∑
n=0

(ν
n

)
fν−n(z) · gn(z) , ν ∈ R, z ∈ Ω,

where gn(z) is the ordinary derivative of g(z) of order n ∈ N0, it being tacitly assumed that g(z)
is the polynomial part (if any) of the product f(z) · g(z).

Fractional differintegral operator also has the following properties:

• For a constant λ, (
eλz
)
ν

= λνeλz , λ 6= 0, ν ∈ R, z ∈ C ;

• For a constant λ, (
e−λz

)
ν

= e−iπνλνeλz , λ 6= 0, ν ∈ R, z ∈ C ;

• For a constant λ,

(
zλ
)
ν

= e−iπν Γ(ν− λ)

Γ(−λ)
zλ−ν , ν ∈ R, z ∈ C,

∣∣∣∣Γ(ν− λ)

Γ(−λ)

∣∣∣∣ <∞ .
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Neumann series

The series

Nν(z) :=

∞∑
n=1

αnJν+n(z), z ∈ C, (3.1)

where ν, αn are constants and Jµ signifies the Bessel function of the first kind of order µ, is called
a Neumann series [130, Chapter XVI]. Such series owe their name to the fact that they were first
systematically considered (for integer µ) by Carl Gottfried Neumann in his important book [73] in 1867,
and subsequently in 1877, Leopold Bernhard Gegenbauer extended such series to µ ∈ R (see [130, p.
522]).

Neumann series of Bessel functions arise in a number of application areas. For example, in connection
with random noise, Rice [100, Eqs. (3.10–17)] applied Bennett’s result

∞∑
n=1

( v
a

)n
Jn(ai v) = ev

2/2

∫v
0

xe−x2/2J0(ai x) dx . (3.2)

Luke [61, p. 271–288] proved that

1−

∫v
0

e−(u+x)J0
(
2i
√
ux
)

dx =


e−(u+v)

∞∑
n=0

(u
v

)n/2
Jn
(
2i
√
uv
)
, if u < v

1− e−(u+v)

∞∑
n=0

( v
u

)n/2
Jn
(
2i
√
uv
)
, if u > v

.

In both of these applications N0 plays a key role. The function N0 also appears as a relevant technical
tool in the solution of the infinite dielectric wedge problem by Kontorovich–Lebedev transforms [101]. It
also arises in the description of internal gravity waves in a Boussinesq fluid [72], as well as in the study
of the propagation properties of diffracted light beams; see for example [67, Eqs. (6a,b), (7b), (10a,b)].

Our main goals are to derive a coefficients of Neumann series, to establish a closed integral representation
formulae for that series and also for the modified Neumann series of the first and second kind.

The problem of computing the coefficients of the Neumann series of Bessel functions has been considered
in a number of publications in the mathematical literature.

18
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For example, Watson [130] showed that, given a function f that is analytic inside and on a circle of radius
R, with center at the origin, and if C denotes the integration contour formed by that circle, then f can
be expanded into a Neumann series [130, Eq. (16.1), p. 523]

N0(z) =

∞∑
n=0

αn Jn(z).

The corresponding coefficients are given by [130, Eq. (16.2), p. 523]

αn =
εn

2πi

∫
C

f(t)On(t)dt,

where the functions On(t), n = 0, 1, . . . , are the Neumann polynomials, and can be obtained from

1

t− z
=

∞∑
n=0

εnOn(t) Jn(z) ,

where

εn =


1, if n = 0

2, if n ∈ N

is the so–called Neumann factor.

Wilkins [131] showed that a function f(x) can be represented on (0,∞) by a Neumann series of the form

NW
ν (x) =

∞∑
n=0

anν Jν+2n+1(x), ν ≥ −1/2 , (3.3)

where the coefficients anν are

αnν = 2(ν+ 2n+ 1)

∫∞
0

t−1f(t) Jν+2n+1(t)dt.

The problem of integral representation of Neumann series of Bessel functions occurs not so frequently.
Besides the already mentioned Rice’s result (3.2), there is also Wilkins who considered the possibility of
integral representation for even–indexed Neumann series (3.3). Finally, let us mention Luke’s integral
epxression for N0(x) [61, pp.271–288] and [84, Eq. (2a)]. It is worth of mention that the bivariate von
Lommel functions of real order are defined by even indexed Neumann–type series [130, 16.5 Eqs. (5),
(6)] which ones have closed integral expressions, see [130, Eq. 16.5] and [95, Concluding remarks].

Quite recently, completely different kind integral representation for (3.1) has been given by Pogány and
Süli in [95]. The main result of that article is the following theorem, which will be of great use in proving
our own results:

Theorem A. (T. K. Pogány and E. Süli [95]) Let α ∈ C1(R+) and let α|N = {αn}n∈N. Then, for all
x, ν such that

x ∈
(
0, 2min

{
1,
(
e lim sup

n→∞ n−1|αn|1/n
)−1})

=: Iα , ν > −3/2,
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we have that

Nν(x) = −

∫∞
1

∫ [u]

0

∂

∂u

(
Γ
(
ν+ u+ 1/2

)
Jν+u(x)

)
· dv
( α(v)

Γ(ν+ v+ 1/2)

)
du dv, (3.4)

where
dx := 1+ {x}

d
dx
.

3.1 Construction of coefficients of Nν(z)

In [95] the problem of constructing a function α, with α
∣∣
N ≡ αn, was posed, such that the integral

representation (3.4) holds. The purpose of this section is to answer this open question.

The results exposed in this section concern to the paper by Jankov et al. [43].

We will describe the class Λ = {α} of functions that generate the integral representation (3.4) of the
corresponding Neumann series, in the sense that the restriction α

∣∣
N =

(
αn
)

forms the coefficient array
of the series (3.1). Knowing only the set of nodes N :=

{
(n,αn)

}
n∈N this question cannot be answered

merely by examining the convergence of the series Nν(x) and then interpolating the set N. We formulate
an answer to this question so that the resulting class of functions α depends on a suitable, integrable (on
R+), scaling–function h.

Theorem 3.1. (D. Jankov, T. K. Pogány and E. Süli [43]) Let Theorem A hold for a given convergent
Neumann series of Bessel functions, and suppose that the integrand in (3.4) is such that

∂

∂ω

(
Γ
(
ν+ω+ 1/2

)
Jν+ω(x)

) ∫ [ω]

0

dη

( α(η)

Γ(ν+ η+ 1/2)

)
dη ∈ L1(R+) ,

and let
h(ω) :=

∂

∂ω

(
Γ
(
ν+ω+ 1/2

)
Jν+ω(x)

) ∫ω
0

dη

( α(η)

Γ(ν+ η+ 1/2)

)
dη .

Then we have that

α(ω) =


Γ(ν+ k+ 1/2)

d
dω

h(ω)

B(ω)

∣∣∣∣
ω=k+

, if ω = k ∈ N

Γ(ν+ω+ 1/2)

{ω}

(h(ω)

B(ω)
−
h(k+)

B(k)

)
, if 1 < ω 6= k ∈ N

, (3.5)

where
B(ω) :=

∂

∂ω

(
Γ(ν+ω+ 1/2) Jν+ω(x)

)
.

Proof. Assume that the integral representation (3.4) holds for some class Λ of functions α whose restric-
tion α

∣∣
N forms the coefficient array employed in Nν(x). Suppose that h̃ ∈ L1(R+) is defined by

h̃(ω) :=
∂

∂ω

(
Γ
(
ν+ω+ 1/2

)
Jν+ω(x)

)
·
∫ [ω]

0

dη

( α(η)

Γ(ν+ η+ 1/2)

)
dη; (3.6)
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in other words, h̃ converges to zero sufficiently fast as ω → +∞ so as to ensure that the integral (3.4)
converges. Because ω ∼ [ω] for large ω, by (3.6) we deduce that∫ω

0

dη

( α(η)

Γ(ν+ η+ 1/2)

)
dη =

h(ω)

B(ω)
, (3.7)

where

h(ω) =

h̃(ω)

∫ω
0

dη

( α(η)

Γ(ν+ η+ 1/2)

)
dη∫ [ω]

0

dη

( α(η)

Γ(ν+ η+ 1/2)

)
dη

∼ h̃(ω), ω→∞.
Differentiating (3.7) with respect to ω we get

{ω}α ′(ω) +
(
1− {ω}ψ(ν+ω+ 1/2)

)
α(ω) = Γ(ν+ω+ 1/2) · ∂

∂ω

h(ω)

B(ω)
, (3.8)

where ψ denotes the familiar digamma-function, i.e. ψ := (ln Γ) ′. For integer ω ≡ k ∈ N we know
the coefficient–set Λ = {αk}. Therefore, let ω ∈ (k, k + 1), where k is a fixed positive integer. By this
specification (3.8) becomes a linear ODE in the unknown α:

α ′(ω) +
( 1

ω− k
−ψ(ν+ω+ 1/2)

)
α(ω) =

Γ(ν+ω+ 1/2)

ω− k
· ∂
∂ω

h(ω)

B(ω)
.

After some routine calculations we get

α(ω) =
Γ(ν+ω+ 1/2)

{ω}

(
Ck +

h(ω)

B(ω)

)
,

where Ck denotes the integration constant. Thus we deduce that, for ω ≥ 1, we have

α(ω) =


αk, if ω = k ∈ N

Γ(ν+ω+ 1/2)

{ω}

(
Ck +

h(ω)

B(ω)

)
, if 1 < ω 6= k ∈ N

.

It remains to find the numerical value of Ck. By the assumed convergence of Nν(x), α(ω) has to decay
to zero as k→∞. Indeed, Landau’s bound [53], viz.

|Jν(x)| ≤ cL x−1/3, cL = sup
x∈R+

x1/3J0(x) ,

clarifies this claim. Since k is not a pole of Γ(ν+ω+ 1/2), by L’Hospital’s rule we deduce that

αk = lim
ω→k+

α(ω) = lim
ω→k+

Γ(ν+ω+ 1/2) lim
ω→k+

Ck +
h(ω)

B(ω)

ω− k

= Γ(ν+ k+ 1/2) lim
ω→k+

d
dω

h(ω)

B(ω)
= Γ(ν+ k+ 1/2)

d
dω

h(ω)

B(ω)

∣∣∣∣
ω=k+

,

such that makes sense only for

Ck = −
h(k+)

B(k)
.
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Hence

α(ω) =


Γ(ν+ k+ 1/2)

d
dω

h(ω)

B(ω)

∣∣∣∣
ω=k+

, if ω = k ∈ N

Γ(ν+ω+ 1/2)

{ω}

(h(ω)

B(ω)
−
h(k+)

B(k)

)
, if 1 < ω 6= k ∈ N

.

This proves the assertion of the Theorem 3.1.

3.1.1 Examples

Now, we will consider some examples of the function h̃ ∈ L1(R+), which describes the convergence rate
to zero of the integrand in (3.6) at infinity, and h(ω) ∼ h̃(ω), ω → ∞, where h is function from the
Theorem 3.1.

Example 3.1. Let h̃(ω) = e−[ω]. Since
∫∞
0

e−[ω] dω = e/(e − 1), we have that h̃ ∈ L1(R+). As
e−[ω] ∼ e−ω = h(ω) as ω→∞, by (3.5) we conclude

α(ω) =


Γ(ν+ k+ 1/2)

d
dω

e−ω

B(ω)

∣∣∣∣
ω=k+

, if ω = k ∈ N

Γ(ν+ω+ 1/2)

{ω}

( e−ω

B(ω)
−

e−k

B(k)

)
, if 1 < ω 6= k ∈ N

.

Example 3.2. Let h̃(ω) =
[ω]β−1

e[ω] − 1
, β > 1; then

∫∞
0

h̃(ω) dω =

∞∑
n=1

(n− 1)β−1

en−1 − 1
,

which is a convergent series, so h̃ ∈ L1(R+). As ω→∞ we have that

[ω]β−1
(
e[ω] − 1

)−1
∼ ωβ−1

(
eω − 1

)−1
= h(ω) .

Hence
∫∞
0
h(ω) dω = Γ(β)ζ(β), where ζ is Riemann’s ζ function. Then, for such β, (3.5) gives

α(ω) =



Γ(ν+ k+ 1/2)
d

dω
ωβ−1

(eω − 1)B(ω)

∣∣∣∣
ω=k+

, if ω = k ∈ N

Γ(ν+ω+ 1/2)

{ω}

( ωβ−1

B(ω) (eω − 1)

−
kβ−1

B(k) (ek − 1)

)
, if 1 < ω 6= k ∈ N

.

Example 3.3. Let h̃(ω) = e−s[ω]J0([ω]), where s > 1 and J0 is the Bessel function of the first kind of
order zero. Since ∫∞

0

e−s[ω]J0([ω]) dω =

∞∑
n=1

e−s(n−1)J0(n− 1),
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we see that h̃ ∈ L1(R+). Because e−s[ω]J0([ω]) ∼ e−sωJ0(ω) = h(ω) as ω → ∞, and
∫∞
0
h(ω) dω =

(s2 + 1)−1/2, from (3.5) we deduce

α(ω) =


Γ(ν+ k+ 1/2)

d
dω

e−sωJ0(ω)

B(ω)

∣∣∣∣
ω=k+

, if ω = k ∈ N

Γ(ν+ω+ 1/2)

{ω}

(e−sωJ0(ω)

B(ω)
−

e−skJ0(k)

B(k)

)
, if 1 < ω 6= k ∈ N

.

3.2 Integral representations for Nν(x) via Bessel differential equa-

tion

Previously, we introduced an integral representation (3.4) of Neumann series (3.1), compare Theorem
A. The purpose of this section is to establish another (indefinite) integral representations for Neumann
series of Bessel function by means of Chessin’s results [13, 14] and by applying the variation of parameters
method. Finally, using fractional differintegral approach in solving the nonhomogeneous Bessel ordinary
differential equation [58, 59, 127, 128, 129] we derive integral expression formulæ for Nν(x).

The listed results are taken from the paper Baricz et al. [6].

3.2.1 Approach by Chessin

One of the crucial arguments used in the proof of our main results is the simple fact that the Bessel
functions of the first kind are actually particular solutions of the second-degree homogeneous Bessel
differential equation. We note that this approach in the study of the Neumann series of Bessel functions
is much simpler than the previous methods which we have found in the literature. In the geometric
theory of univalent functions the idea to use Bessel’s differential equation is also useful in the study of
geometric properties (like univalence, convexity, starlikeness, close-to-convexity) of Bessel functions of
the first kind. For more details we refer to the monograph [3].

In the sequel we shall need the Bessel functions of the second kind of order ν (or MacDonald functions)
Yν(x) which satisfy

Yν(x) = cosec(πν)
(
Jν(x) cos(πν) − J−ν(x)

)
, ν 6∈ Z, | arg(z)| < π , (3.9)

and which have the following differentiability properties

W[Jν, Yν](z) =
2

πz
, W[J−ν, Jν](z) =

2 sin(νπ)

πz
, ν ∈ R, z 6= 0 , (3.10)

valid for the related Wronskians W[·, ·](x).

Explicit solution of Bessel differential equation with general nonhomogeneous part

y ′′ +
1

x
y ′ +

(
1−

ν2

x2

)
y = f(x) , (3.11)
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has been derived for the first time in a set of articles by Chessin more than a century ago, see for example
[13, 14]. In [13, p. 678] Chessin differs the cases:

• For ν = n ∈ Z the solution is given by

y(x) = A(x)Jn(x) + B(x)Yn(x), (3.12)

and

A ′(x) =
Yn(x)f(x)

W[ Yn, Jn](x)
= −

πxYn(x)f(x)

2
, B ′(x) = −

Jn(x)f(x)

W[ Yn, Jn](x)
=
πxJn(x)f(x)

2
.

• If ν /∈ Z, we have
y(x) = A1(x)Jν(x) + B1(x)J−ν(x), (3.13)

where

A ′1(x) =
J−ν(x)f(x)

W[J−ν, Jν](x)
=
πxJ−ν(x)f(x)

2 sin(νπ)
, B ′1(x) = −

Jν(x)f(x)

W[J−ν, Jν](x)
= −

πxJν(x)f(x)

2 sin(νπ)
.

Consider the homogeneous Bessel differential equation of (n+ ν)-th index

x2y ′′ + xy ′ + (x2 − (n+ ν)2)y = 0 , n ∈ N , 2ν+ 3 > 0 ,

which particular solution is Jn+ν(x), that is

x2J ′′n+ν(x) + xJ ′n+ν(x) + (x2 − (n+ ν)2)Jn+ν(x) = 0 . (3.14)

Multiplying (3.14) by αn, then summing up this expression with respect to n ∈ N we arrive at

x2N ′′ν(x) + xN ′ν(x) + (x2 − ν2)Nν(x) = Pν(x) :=

∞∑
n=1

n(n+ 2ν)αnJn+ν(x); (3.15)

the right side expression Pν(x) defines the so–called Neumann series of Bessel functions associated to
Nν(x). Obviously (3.15) turns out to be a nonhomogeneous Bessel differential equation in unknown
function Nν(x), while by virtue of substitution αn 7→ n(n+ 2ν)αn, Theorem A gives

Pν(x) = −

∫∞
1

∫ [u]

0

∂

∂u

(
Γ
(
ν+ u+ 1/2

)
Jν+u(x)

)
· ds
( s (s+ 2ν)α(s)

Γ(ν+ s+ 1/2)

)
duds. (3.16)

Let us find the domain of associated Neumann series Pν(x). Theorem A gives the same range of validity
x ∈ Iα by means of the estimate

∣∣Pν(x)∣∣ ≤ ∞∑
n=1

n(n+ 2ν)|αn|
∣∣Jn+ν(x)

∣∣ .
since lim supn→∞{n(n+ 2ν)}1/n = 1.
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Using the Landau’s bound (2.22) we see that Pν(x) is defined for all x ∈ Iα when series
∑∞
n=1 n

5/3αn

absolutely converges such that clearly follows from

∣∣Pν(x)∣∣ ≤ bL ∞∑
n=1

n (n+ 2ν)

(n+ ν)1/3
|αn| .

Now, we are ready to formulate our first main result in this section.

Theorem 3.2. (Á. Baricz, D. Jankov and T. K. Pogány [6]) Let α ∈ C1(R+) and let α|N = {αn}n∈N

and assume that
∑∞
n=1 n

5/3αn absolutely converges. Then for all x ∈ Iα, ν > −1/2 we have

Nν(x) =



π

2

(
Yn(x)

∫
Jn(x)Pν(x)

x
dx− Jn(x)

∫
Yn(x)Pν(x)

x
dx

)
, if ν = n ∈ Z

π

2 sin(νπ)

(
Jν(x)

∫
J−ν(x)Pν(x)

x
dx

−J−ν(x)

∫
Jν(x)Pν(x)

x
dx

)
, if ν 6∈ Z

. (3.17)

Proof. It is enough to substitute f(x) ≡ x−2Pν(x) in nonhomogeneous Bessel differential equation (3.11)
and calculate integrals in (3.12) and (3.13), using into account the differentiability properties (3.10).
Then, by Chessin’s procedure we arrive at the asserted expressions (3.17).

Remark 3.3. Chessin’s derivation procedure is in fact the variation of parameters method. Repeating
calculations by variation of parameters method we will arrive at

Nν(x) =
π

2

(
Yν(x)

∫
Jν(x)Pν(x)

x
dx− Jν(x)

∫
Yν(x)Pν(x)

x
dx
)
,

where ν > −1/2, x ∈ Iα. �

Theorem 3.4. (Á. Baricz, D. Jankov and T. K. Pogány [6]) Let the situation be the same as in Theorem
3.2. Then for

∑∞
n=1 n

5/3|αn| <∞, we have

Nν(x) =
Jν(x)

2

∫
1

xJ2ν(x)

(∫
Pν(x) · Jν(x)

x
dx
)

dx

+
Yν(x)

2

∫
1

xY2ν(x)

(∫
Pν(x) · Yν(x)

x
dx
)

dx ,

where Pν stands for the Neumann series (3.16) associated with the initial Neumann series of Bessel
functions Nν(x), x ∈ Iα.

Proof. We apply now the reduction of order method in solving the Bessel equation. Solution of

x2y ′′(x) + xy ′(x) + (x2 − ν2)y(x) = 0 (3.18)

in Iα is given by
yh(x) = C1Yν(x) + C2Jν(x) .
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It is well known that Jν and Yν are independent solutions of the homogeneous Bessel differential equation
(3.18), since the Wronskian W(x) = W[Jν(x), Yν(x)] = 2/(πx) 6= 0, x ∈ Iα.

Since Jν(x) is a solution to the homogeneous ordinary differential equation, a guess of the particular
solution is Nν(x) = Jν(x)w(x). Substituting this form into (3.18) we get

x2(J ′′νw+ 2J ′νw
′ + Jνw

′′) + x(J ′νw+ Jνw
′) + (x2 − ν2)Jνw = Pν(x).

Rewriting the equation as

w
(
x2J ′′ν + xJ ′ν + (x2 − ν2)Jν

)
+w ′(2x2J ′ν + xJν) +w ′′ x2Jν = Pν(x),

shows that the first term vanishes being Jν solution of the homogeneous part of (3.18). This leaves the
following linear ordinary differential equation for w ′:

(w ′) ′ +
2xJ ′ν + Jν

xJν
w ′ =

Pν(x)

x2Jν
.

Hence
w ′ =

1

xJ2ν

∫
Pν · Jν
x

dx+
C3

xJ2ν
,

i.e.
w =

∫
1

xJ2ν

{∫ Pν · Jν
x

dx
}

dx+ C3
π

2

Yν

Jν
+ C4 ,

because ∫
1

xJ2ν
dx =

π

2

Yν

Jν
.

Being Jν, Yν independent, that make up the homogeneous solution, they do not contribute to the partic-
ular solution and the constants C3, C4 can be set to be zero.

Now, we can take particular solution in the form Nν(x) = Yν(x)w(x), and analogously as above, we get

Nν(x) = Yν(x)

∫
1

xY2ν

(∫
Bν · Yν
x

dx
)

dx− C5
π

2
Jν(x) + C6Yν(x) ,

having in mind that ∫
1

xY2ν
dx = −

π

2

Jν

Yν
.

Choosing C5 = C6 = 0, we complete the proof of the asserted result.

3.2.2 Solutions of Bessel differential equation using a fractional differintegral

In this section we will give the solution of nonhomogeneous Bessel differential equation, using properties
associated with the fractional differintegration which was introduced in Chapter 2.

Below, we shall need the result given as the part of e.g. [58, p. 1492, Theorem 3], [128, p. 109, Theorem
3]). We recall the mentioned result in our setting. Thus, if Pν(x), x ∈ Iα satisfies the constraint (3.15)
and

(
Pν(x)

)
−µ
6= 0, then the following nonhomogeneous linear ordinary differential equation (3.15) has
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a particular solution yp = yp(x) in the form

yp(x) = xµeλx
((
xµ−1/2e2λx

(
x−µ−1e−λxPν(x)

)
−µ−1/2

)
−1
x−µ−1/2e−2λx

)
µ−1/2

(3.19)

where µ ∈ R; λ = ±i; x ∈ (C\R)∪Iα, provided that Pν(x). Let us simplify (3.19), using the generalized
Leibniz rule [58, p. 1489, Lemma 3]:

(
x−µ−1e−λxPν(x)

)
−µ−1/2

=

∞∑
n=0

(
−µ− 1/2

n

)
(x−µ−1e−λx)−µ−1/2−n

(
Pν(x)

)
n

=

∞∑
n,k=0

(
−µ− 1/2

n

)(
−µ− 1/2− n

k

)
(x−µ−1)−µ−1/2−n−k(e−λx)k

(
Pν(x)

)
n

=
Λµ(x)

π

∞∑
n,k=0

(
−µ− 1/2

n

)(
−µ− 1/2− n

k

)
(−x)n(λx)kΓ(−n− k+ 1/2)

(
Pν(x)

)
n
,

where

Λµ(x) =
πeiπ(µ+1/2)−λx

Γ(µ+ 1)
√
x

.

By Euler’s reflection formula Γ(z)Γ(1− z) = πcosec(πz), we get

(
x−µ−1e−λxPν(x)

)
−µ−1/2

= Λµ(x)

∞∑
n,k=0

(
−µ− 1/2

n

)(
−µ− 1/2− n

k

)
xn(−λx)k

(
Pν(x)

)
n

Γ(1/2+ n+ k)
.

Now we have(
xµ−1/2e2λx

(
x−µ−1e−λxPν(x)

)
−µ−1/2

)
−1

=
πeiπ(µ+1/2)

Γ(µ+ 1)

∞∑
n,k=0

(
−µ− 1/2

n

)(
−µ− 1/2− n

k

) (−λ)k
(
xµ+n+k−1eλx

(
Pν(x)

)
n

)
−1

Γ(1/2+ n+ k)

=
πxµ eiπ(µ+1/2)+λx

Γ(µ+ 1)

∞∑
n,k=0

(
−µ− 1/2

n

)(
−µ− 1/2− n

k

)
(−λ)kxn+k

(
Pν(x)

)
n

(µ+ n+ k)Γ(1/2+ n+ k)
.

Finally, after some simplification (again by Euler’s reflection formula) we get

yp(x) =
1

Γ(µ+ 1)

∞∑
n,k,`,m=0

(
−µ− 1/2

n

)(
−µ− 1/2− n

k

)(
−µ− 1/2

`

)(
−µ− 1/2− `

m

)
(3.20)

· (−1)
1+`+nλk+mΓ(µ− `−m− n− k)

(µ+ n+ k)
xn+k+`+m

(
Pν(x)

)
n+`

.

These in turn imply the following result.

Theorem 3.5. (Á. Baricz, D. Jankov and T. K. Pogány [6]) Let α ∈ C1(R+), α|N = {αn}n∈N and
assume that

∑∞
n=1 n

5/3αn absolutely converges. Then for all x ∈ (C \ R) ∪ Iα, ν > −1/2 there holds

Nν(x) = yp(x) ,

where yp is given by (3.20).



Chapter 3. Neumann series 28

Remark 3.6. In [58, p. 1492, Theorem 3] it is given solution of the homogeneous differential equation

x2y ′′ + xy ′ + (x2 − µ2)y = 0

in the form
yh(x) = Kxµeλx

(
x−µ−1/2e−2λx

)
µ−1/2

(3.21)

for all µ ∈ R; λ = ±i; x ∈ (C \ R)∪ Iα and where K is an arbitrary real constant. Then, summing (3.20)
and (3.21) we can get another solution of nonhomogeneous linear ordinary differential equation (3.15).
�

3.2.3 Fractional integral representation

Recently Lin, Srivastava and coworkers devoted articles to explicit fractional solutions of nonhomogeneous
Bessel differential equation, such that turn out to be a special case of the Tricomi equation [58, 59, 128,
129]. In this section we will exploite their results to obtain further integral representation formulae for
the Neumann series Nν(x).

Using the fractional–calculus approach the mentioned we have obtain the following solutions of the
homogeneous Bessel differential equation, depending on the parameter ν which can be found in [127]:

• For ν = n+ 1/2, n ∈ N0, the solution is given by

yh(x) = K1J−n−1/2(x) + K2Jn+1/2(x),

where K1 and K2 are arbitrary constants, and

J−n−1/2(x) =

√
2

πx

(
cos
(
x+

π

2
n
) [n/2]∑
k=0

(−1)k
(n+ 2k)!

(2k)!(n− 2k)!
(2x)−2k

− sin
(
x+

π

2
n
) [(n−1)/2]∑

k=0

(−1)k
(n+ 2k+ 1)!

(2k+ 1)!(n− 2k− 1)!
(2x)−2k−1

)
, (3.22)

Jn+1/2(x) =

√
2

πx

(
sin
(
x−

π

2
n
) [n/2]∑
k=0

(−1)k
(n+ 2k)!

(2k)!(n− 2k)!
(2x)−2k

+ cos
(
x−

π

2
n
) [(n−1)/2]∑

k=0

(−1)k
(n+ 2k+ 1)!

(2k+ 1)!(n− 2k− 1)!
(2x)−2k−1

)
. (3.23)

• For ν /∈ Z the solution is
yh(x) = K1J−ν(x) + K2Jν(x),
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where K1 and K2 are arbitrary constants, and asymptotic estimates for J−ν and Jν follows from
equations (3.22) and (3.23), respectively, i.e.

J−ν(x) ∼

√
2

πx

(
cos
(
x+

1

2
νπ−

1

4
π
) ∞∑
k=0

(−1)k
Γ(ν+ 2k+ 1/2)

(2k)!Γ(ν− 2k+ 1/2)
(2x)−2k

− sin
(
x+

1

2
νπ−

1

4
π
) ∞∑
k=0

(−1)k
Γ(ν+ 2k+ 3/2)

(2k+ 1)!Γ(ν− 2k− 1/2)
(2x)−2k−1

)
,

Jν(x) ∼

√
2

πx

(
cos
(
x−

1

2
νπ−

1

4
π
) ∞∑
k=0

(−1)k
Γ(ν+ 2k+ 1/2)

(2k)!Γ(ν− 2k+ 1/2)
(2x)−2k

− sin
(
x−

1

2
νπ−

1

4
π
) ∞∑
k=0

(−1)k
Γ(ν+ 2k+ 3/2)

(2k+ 1)!Γ(ν− 2k− 1/2)
(2x)−2k−1

)

each of which is valid for large values of |x| provided that |arg(x)| ≤ π− ε, (0 < ε < π).

(iii) In the case when ν = n ∈ Z, two linearly independent solutions which make a general solution of
Bessel differential equation, are Jn and

Yn(x) ∼
n→∞

√
2

πx

(
sin
(
x−

π

2
n−

π

4

) ∞∑
k=0

(−1)k
Γ(n+ 2k+ 1/2)

(2k)!Γ(n− 2k+ 1/2)!
(2x)−2k

+ cos
(
x−

π

2
n−

π

4

) ∞∑
k=0

(−1)k
Γ(n+ 2k+ 3/2)

(2k+ 1)!Γ(n− 2k− 1/2)
(2x)−2k−1

)
.

Using the previous results we easily get the following results.

Theorem 3.7. (Á. Baricz, D. Jankov and T. K. Pogány [6]) Let the conditions from Theorem 3.2 hold.
Then, the integral representation formulae for the function Nν(x) reads as follows:

• for ν = n+ 1
2 , n ∈ N0, we have

Nn+1/2(x) =
(−1)nπ

2

(
Jn+1/2(x)

∫
J−n−1/2(x)Pν(x)

x
dx− J−n−1/2(x)

∫
Jn+1/2(x)Pν(x)

x
dx

)
;

(3.24)

• for ν /∈ Z, it is

Nν(x) =
π

2 sin(νπ)

(
Jν(x)

∫
J−ν(x)Pν(x)

x
dx− J−ν(x)

∫
Jν(x)Pν(x)

x
dx

)
. (3.25)

Here J∓n∓1/2(x) are given in (3.22) and (3.23) respectively and Pν stands for the Neumann series (3.16)
associated with the initial Neumann series Nν(x), x ∈ Iα.

Proof. By variation of parameters method and by virtue of (3.10) we get the representations (3.24) and
(3.25).
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3.3 Integral representations for Neumann–type series of Bessel

functions

In this section we cite the results from the paper Baricz et al. [5].

Here we pose the problem of integral representation for another Neumann–type series of Bessel functions
when Jν is replaced in (3.1) by modified Bessel function of the first kind Iν, Bessel functions of the
second kind Yν, Kν (called Basset–Neumann and MacDonald functions respectively), Hankel functions
H

(1)
ν , H

(2)
ν (or Bessel functions of the third kind), of which precise definitions can be found in [130].

According to the established nomenclatures in the sequel we will distinguish Neumann series of first,
second and third kind depending on the Bessel functions which build this series. So, the first kind
Neumann series are

Nν(z) :=

∞∑
n=1

αn Jν+n(z), Mν(z) :=

∞∑
n=1

βn Iν+n(z) . (3.26)

The second kind Neumann series we introduce as

Jν(z) :=

∞∑
n=1

δn Kν+n(z), Xν(z) :=

∞∑
n=1

γn Yν+n(z) . (3.27)

In the next two sections our aim is to present closed form expressions for these Neumann series occurring
in (3.26) and (3.27). Our main tools include Laplace–integral form of a Dirichlet series [48], the condensed
form of Euler–Maclaurin summation formula [95, p. 2365] and certain bounding inequalities for Iν and
Kν, see [4].

3.3.1 Integral representation for the first kind Neumann series Mν(x)

First, we present an integral representation for the first kind Neumann series Mν(x), where Iν is the
modified Bessel function of the first kind of order ν, defined by

Iν(z) =

∞∑
n=0

(
z
2

)2n+ν

Γ(n+ ν+ 1)n!
, z, ν ∈ C .

Theorem 3.8. (Á. Baricz, D. Jankov and T.K. Pogány [5]) Let β ∈ C1(R+), β|N = {βn}n∈N and assume

that
∞∑
n=1

βn is absolutely convergent. Then, for all

x ∈

(
0, 2min

{
1,

(
e lim sup

n→∞ n−1|βn|1/n
)−1
})

=: Iβ, ν > −3/2,

we have the integral representation

Mν(x) = −

∫∞
1

∫ [u]

0

∂

∂u
(Γ(ν+ u+ 1/2) Iν+u(x)) · ds

(
β(s)

Γ(ν+ s+ 1/2)

)
duds .
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Proof. First, we establish the convergence conditions of the first kind Neumann series Mν(x). By virtue
of the bounding inequality [4, p. 583]:

Iµ(x) <

(
x
2

)µ
Γ(µ+ 1)

e
x2

4(µ+1) , x > 0, µ+ 1 > 0 ,

and having in mind that Iβ ⊆ (0, 2), we conclude that

|Mν(x)| < max
n∈N

(
x
2

)ν+n

Γ(ν+ n+ 1)
e

x2

4(ν+n+1)

∞∑
n=1

|βn| =

(
x
2

)ν+1

Γ(ν+ 2)
e

x2

4(ν+2)

∞∑
n=1

|βn| ,

so, the absolute convergence of
∞∑
n=1

βn suffices for the finiteness of Mν(x) on Iβ. Here we used tacitly

that for x ∈ Iβ and ν > −1 fixed, the function

α 7→ f(α) =

(
x
2

)ν+α

Γ(ν+ α+ 1)
e

x2

4(ν+α+1)

is decreasing on [α0,∞), where α0 ≈ 1.4616 denotes the abscissa of the minimum of Γ , because Γ is
increasing on [α0,∞) and then

f ′(α)

f(α)
= ln

(x
2

)
−

x2

4(ν+ α+ 1)2
−
Γ ′(ν+ α+ 1)

Γ(ν+ α+ 1)
≤ 0.

Consequently, for all n ∈ {2, 3, . . . } we have f(n) ≤ f(2). Moreover, by using the inequality ex ≥ 1 + x,

it can be shown easily that f(1) ≥ f(2) for all x > 0 and ν > −1. These in turn imply that indeed
max
n∈N

f(n) = f(1), i.e.

max
n∈N

(
x
2

)ν+n

Γ(ν+ n+ 1)
e

x2

4(ν+n+1) =

(
x
2

)ν+1

Γ(ν+ 2)
e

x2

4(ν+2) ,

as we required.

Now, recall the following integral representation [130, p. 79]

Iν(z) =
21−νzν√
π Γ(ν+ 1/2)

∫1
0

(1− t2)ν−1/2 cosh(zt)dt, z ∈ C, <(ν) > −1/2, (3.28)

which will be used in the sequel. Since (3.28) is valid only for ν > −1/2, in what follows for the Neumann
series Mν(x) we suppose that ν > −3/2. Setting (3.28) into right-hand series in (3.26) we have

Mν(x) =

√
2x

π

∫1
0

cosh(xt)

(
x(1− t2)

2

)ν−1/2

Dβ(t)dt , x > 0, (3.29)

with the Dirichlet series

Dβ(t) :=

∞∑
n=1

βn

Γ(n+ ν+ 1/2)
exp

(
−n ln

2

x(1− t2)

)
. (3.30)
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Following the lines of the proof of [95, Theorem] we deduce that the x–domain is

0 < x < 2min

{
1,

(
e lim sup
n→∞ n−1 n

√
|βn|

)−1
}
.

For such x, the convergent Dirichlet series (3.30) possesses a Laplace–integral form

Dβ(t) = ln
2

x(1− t2)

∫∞
0

(
x(1− t2)

2

)u [u]∑
j=1

βj

Γ(j+ ν+ 1/2)

 du. (3.31)

Expressing (3.31) via the condensed Euler–Maclaurin summation formula (2.12), we get

Dβ(t) = ln
2

x(1− t2)

∫∞
0

∫ [u]

0

(
x(1− t2)

2

)u
· ds

(
β(s)

Γ(ν+ s+ 1/2)

)
du ds. (3.32)

Substituting (3.32) into (3.29) we get

Mν(x) = −

√
2x

π

∫∞
0

∫ [u]

0

ds

(
β(s)

Γ(ν+ s+ 1/2)

)
·

(∫1
0

cosh(xt)

(
x(1− t2)

2

)ν+u−1/2

ln
x(1− t2)

2
dt

)
du ds. (3.33)

Now, let us simplify the t–integral in (3.33)

Jx(w) :=

∫1
0

cosh(xt) ·
(
x(1− t2)

2

)w
ln
x(1− t2)

2
dt, w := ν+ u− 1/2. (3.34)

Indefinite integration under the sign of integral in (3.34) results in∫
Jx(w)dw =

(x
2

)w ∫1
0

cosh(xt)(1− t2)wdt =

√
π

2x
Γ(w+ 1)Iw+1/2(x) .

Now, observing that dw = du, we get

Jx(ν+ u− 1/2) =

√
π

2x

∂

∂u
(Γ(ν+ u+ 1/2) Iν+u(x)) .

From (3.33) and (3.34), we immediately get the proof of the theorem, with the assertion that the inte-
gration domain R+ changes to [1,∞) because [u] is equal to zero for all u ∈ [0, 1).

3.3.2 Integral representation for the second kind Neumann series Jν(x) and

Xν(x)

Below, we present an integral representation for the Neumann–type series Jν(x).

Theorem 3.9. (Á. Baricz, D. Jankov and T.K. Pogány [5]) Let δ ∈ C1(R+) and let δ|N = {δn}n∈N.
Then for all ν > 0 and

x ∈ Iδ :=

(
2

e
lim sup
n→∞ n|δn|1/n,+∞) ,
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we have the integral representation

Jν(x) = −

∫∞
1

∫ [u]

0

∂

∂u
Kν+u(x) · dsδ(s) du ds .

Proof. We begin by establishing first the convergence conditions for Jν(x). To this aim let us consider
the integral representation referred to Basset [130, p. 172]:

Kν(x) =
2ν Γ(ν+ 1/2)

xν
√
π

∫∞
0

cos(xt)
(1+ t2)ν+1/2

dt, <(ν) > −1/2, <(x) > 0 .

Consequently, for all <(ν) > 0, x > 0 there holds

Kν(x) ≤
2ν Γ(ν+ 1/2)

xν
√
π

∫∞
0

dt
(1+ t2)ν+1/2

=
1

2

(
2

x

)ν
Γ(ν) . (3.35)

Now, recalling that Γ(s) =
√
2π ss−1/2e−s

(
1+O(s−1)

)
, |s|→∞, we have

|Jν(x)| ≤
1

2

(
2

x

)ν ∞∑
n=1

|δn|Γ(ν+ n)

(
2

x

)n
∼

√
π

2

(
2

ex

)ν ∞∑
n=1

(ν+ n)ν+n−1/2|δn|

(
2

ex

)n
where the last series converges uniformly for all ν > 0 and x ∈ Iδ. Note that more convenient integral
representation for the modified Bessel function of the second kind is [130, p. 183]

Kν(x) =
1

2

(x
2

)ν ∫∞
0

t−ν−1e−t−x
2

4t dt, | arg(x)| < π/2, <(ν) > 0. (3.36)

Thus, combining the right-hand equality in (3.27) and (3.36) we get

Jν(x) =
1

2

(x
2

)ν ∫∞
0

t−ν−1e−t−x
2

4t · Dδ(t) dt, x ∈ Iδ, (3.37)

where Dδ(t) is the Dirichlet series

Dδ(t) =

∞∑
n=1

δn

( x
2t

)n
=

∞∑
n=1

δn exp
(

−n ln
2t

x

)
. (3.38)

The Dirichlet series’ parameter is necessarily positive, therefore (3.38) converges for all x ∈ Iδ. Now, the
related Laplace–integral and the Euler–Maclaurin summation formula give us:

Dδ(t) = ln
2t

x

∫∞
0

∫ [u]

0

( x
2t

)u
· dsδ(s) duds. (3.39)

Substituting (3.39) into (3.37) we get

Jν(x) = −
xν

2ν+1

∫∞
0

∫ [u]

0

dsδ(s)

(∫∞
0

( x
2t

)u
ln
( x
2t

)
t−ν−1e−t−x

2

4t dt
)

duds. (3.40)

Denoting

Ix(u) :=

∫∞
0

( x
2t

)u
ln
( x
2t

)
t−ν−1e−t−x

2

4t dt,
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we obtain ∫
Ix(u)du =

(x
2

)u ∫∞
0

t−(ν+u)−1e−t−x
2

4t dt = 2

(
2

x

)ν
Kν+u(x) .

Therefore

Ix(u) = 2

(
2

x

)ν
∂

∂u
Kν+u(x) . (3.41)

Finally, by using (3.40) and (3.41) the proof of this theorem is done.

Remark 3.10. It should be mentioned here that by using Alzer’s sharp inequality (see [2])

Γ(x+ y) ≤ Γ(x+ 1) · Γ(y+ 1), min{x, y} ≥ 1,

and combining this with (3.35) we obtain that

|Jν(x)| ≤
1

2

(
2

x

)ν ∞∑
n=1

|δn|Γ(ν+ n)

(
2

x

)n
≤ Γ(ν+ 1)

2

(
2

x

)ν ∞∑
n=1

n!|δn|

(
2

x

)n
,

and the resulting power series converges in Iδ for ν ≥ 1.

On the other hand it is worthwhile to note that, since [xνKν(x)]
′ = −xνKν−1(x), the function x 7→

xνKν(x) is decreasing on (0,∞) for all ν ∈ R, and because of the asymptotic relation xνKν(x) ∼ 2ν−1Γ(ν),

where ν > 0 and x→ 0, we obtain again the inequality (3.35). This inequality is actually the counterpart
of the inequality (see [40, 51])

xνexKν(x) > 2
ν−1Γ(ν),

valid for all ν > 1/2 and x > 0. Moreover, by using the classical Čebyšev integral inequality, it can be
shown that (see [7]) the above lower bound can be improved as follows

xν−1Kν(x) ≥ 2ν−1Γ(ν)K1(x), (3.42)

where ν ≥ 1 and x > 0. Summarizing, for all x > 0 and ν ≥ 1, we have the following chain of inequalities

1

2

(
2

x

)ν−1

Γ(ν)e−x <

(
2

x

)ν−1

Γ(ν)K1(x) ≤ Kν(x) ≤
1

2

(
2

x

)ν
Γ(ν) .

Finally, observe that (see [7]) the inequality (3.42) is reversed when 0 < ν ≤ 1, and this reversed inequality
is actually better than (3.35) for 0 < ν ≤ 1, that is, we have

xνKν(x) ≤ 2ν−1Γ(ν)xK1(x) ≤ 2ν−1Γ(ν),

where in the last inequality we used (3.35) for ν = 1. �

Now, we are going to deduce a closed integral expression for the Neumann series Xν(x), by using the
Struve function Hν.
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Theorem 3.11. (Á. Baricz, D. Jankov and T.K. Pogány [5]) Let γ ∈ C1(R+) and let γ|N = {γn}n∈N.
Then for all

x ∈ Iγ =


(
0, 2(e `)−1

)
, if − 1/2 < ν ≤ 1/2(

2Le−1, 2(e `)−1
)
, if 1/2 < ν ≤ 3/2(

4Le−1, (e `)−1
)
, if ν > 3/2

, (3.43)

where
` := lim sup

n→∞ n−1|γn|1/n, L := lim sup
n→∞ n|γn|1/n ,

there holds

Xν(x) =

∫∞
1

∫ [u]

0

∂

∂u
((Γ(ν+ u+ 1/2) − Γ(ν+ u− 1/2)) Hν+u(x)

+Γ(ν+ u− 1/2)Yν+u(x)) · ds
(

γ(s)

Γ(ν+ s+ 1/2)

)
du ds (3.44)

for Neumann series of the second kind Xν(x) with coefficients {γn}n∈N satisfying

` >

e−1, if ν ∈ (−1/2, 3/2]

(2e)−1, if ν > 3/2
, L ∈


(
e−1, 1

)
, if ν ∈ (−1/2, 3/2](

(2e)−1, 1/2
)
, if ν > 3/2

. (3.45)

Proof. First we establish the convergence region and related parameter constraints upon ν for Xν(x).
The Gubler–Weber formula [130, p. 165]

Yν(z) =
2
(
z
2

)ν
Γ(ν+ 1/2)

√
π

(∫1
0

sin(zt)(1− t2)ν−1/2dt+

∫∞
0

e−zt(1+ t2)ν−1/2dt

)
, (3.46)

where <(z) > 0 and ν > −1/2, enables the derivation of integral expression for the Neumann series
of the second kind Xν(x), by following the lines of derivation for Jν(x). From (3.46), by means of the
well–known inequality

(1+ t2)ν−1/2 ≤ Cν(1+ t2ν−1),where Cν =

1, if 1/2 < ν ≤ 3/2

2ν−3/2, if ν > 3/2
,

we distinguish the following two cases.

Assuming ν ∈ (1/2, 3/2] we have

Yν(x) ≤
2
(
x
2

)ν
Γ(ν+ 1/2)

√
π

(∫1
0

(1− t2)ν−1/2dt+

∫∞
0

e−xt
(
1+ t2ν−1

)
dt

)

=
2
(
x
2

)ν
Γ(ν+ 1/2)

√
π

(√
π Γ(ν+ 1/2)

2Γ(ν+ 1)
+ x−1 +

Γ(2ν)

x2ν

)
=

1

Γ(ν+ 1)

(x
2

)ν
+

1√
π Γ(ν+ 1/2)

(x
2

)ν−1

+
Γ(ν)

π

(
2

x

)ν
.
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Hence

|Xν(x)| ≤
(x
2

)ν ∞∑
n=1

|γn|

Γ(ν+ n+ 1)

(x
2

)n
+

1√
π

(x
2

)ν−1 ∞∑
n=1

|γn|

Γ(ν+ n+ 1/2)

(x
2

)n
+
1

π

(
2

x

)ν ∞∑
n=1

|γn|Γ(ν+ n)

(
2

x

)n
.

The first two series converge uniformly in
(
0, 2(e `)−1

)
, and the third one is uniformly convergent in(

2Le−1,∞) . Consequently the interval of convergence becomes Iγ =
(
2Le−1, 2(e `)−1

)
, and then the

coefficients γn satisfy the condition ` · L < 1. This implies that the necessary condition for convergence
of Xν(x) is lim sup

n→∞ |γn|1/n < 1.

In the case ν > 3/2 we have

Yν(x) ≤
2
(
x
2

)ν
Γ(ν+ 1/2)

√
π

(∫1
0

(1− t2)ν−1/2dt+ 2ν−3/2

∫∞
0

e−xt
(
1+ t2ν−1

)
dt

)

=
2
(
x
2

)ν
Γ(ν+ 1/2)

√
π

(√
π Γ(ν+ 1/2)

2Γ(ν+ 1)
+ 2ν−3/2

(
x−1 +

Γ(2ν)

x2ν

))
=

1

Γ(ν+ 1)

(x
2

)ν
+

xν−1

√
2π Γ(ν+ 1/2)

+
22ν−3/2Γ(ν)

πxν
.

Therefore

|Xν(x)| ≤
(x
2

)ν ∞∑
n=1

|γn|

Γ(ν+ n+ 1)

(x
2

)n
+
xν−1

√
2π

∞∑
n=1

|γn|xn

Γ(ν+ n+ 1/2)

+
1

2π
√
2

(
4

x

)ν ∞∑
n=1

|γn|Γ(ν+ n)

(
4

x

)n
.

The first two series converge in
(
0, 2(e `)−1

)
,
(
0, (e `)−1

)
respectively, while the third series converges

uniformly for all x > 4L/e. This yields the interval of convergence Iγ =
(
4Le−1, (e `)−1

)
. In this case

the coefficients γn satisfy the constraint 4`L < 1, and then the necessary condition for convergence of
Xν(x) is lim sup

n→∞ |γn|1/n < 1/2.

It remains the case −1/2 < ν ≤ 1/2. Then, because of (1+ t2)ν−1/2 ≤ 1, we conclude

Yν(x) ≤
1

Γ(ν+ 1)

(x
2

)ν
+

1

Γ(ν+ 1/2)
√
π

(x
2

)ν−1

,

and consequently Iγ =
(
0, 2(e `)−1

)
. Collecting these cases we get (3.43) and (3.45).

Now, let us focus on the integral representation for Xν(x), where x ∈ Iγ. By the Gubler–Weber formula
(3.46) we have

Xν(x) =
2√
π

(x
2

)ν ∞∑
n=1

γn

Γ(ν+ n+ 1/2)

(x
2

)n
·

(∫1
0

sin(xt)(1− t2)ν+n−1/2dt+

∫∞
0

e−xt(1+ t2)ν+n−1/2 dt

)
. (3.47)
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The first expression in (3.47) we rewrite as

Σ1(x) =
2√
π

(x
2

)ν ∞∑
n=1

γn
(
x
2

)n
Γ(ν+ n+ 1/2)

∫1
0

sin(xt)(1− t2)ν+n−1/2dt

=

√
2x

π

∫1
0

sin(xt)

(
x(1− t2)

2

)ν−1/2

Dγ(t) dt,

where

Dγ(t) :=

∞∑
n=1

γn

Γ(n+ ν+ 1/2)
exp

(
−n ln

2

x(1− t2)

)
is the Dirichlet series analogous to one in (3.30). It is easy to see that in view of (3.45) for all x ∈ Iγ
and t ∈ (0, 1) we have

ln
2

x(1− t2)
> 0.

More precisely, if −1/2 < ν ≤ 3/2, then x < 2(e `)−1, and

2

x(1− t2)
>

e `

1− t2
> e ` > 1 .

Similarly, if ν > 3/2, then x < (e `)−1, and

2

x(1− t2)
>

2e `

1− t2
> 2e ` > 1 .

Thus, the Dirichlet series’ parameter is necessarily positive, and therefore Dγ(t) converges for all x ∈ Iγ.
Consequently, following the same lines as in the proof of Theorem 3.8 we deduce that

Σ1(x) = −

∫∞
0

∫ [u]

0

ds

(
γ(s)

Γ(ν+ s+ 1/2)

)
∂

∂u
(Γ(ν+ u+ 1/2)Hν+u(x)) du ds, (3.48)

where Hν stands for the familiar Struve function.

Below, we will simplify the second expression in (3.47):

Σ2(x) =
2√
π

(x
2

)ν ∞∑
n=1

γn
(
x
2

)n
Γ(ν+ n+ 1/2)

∫∞
0

e−xt(1+ t2)ν+n−1/2 dt

=

√
2x

π

∫∞
0

e−xt

(
x(1+ t2)

2

)ν−1/2

D̃γ(t) dt,
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where D̃γ(t) = Dγ(it). Thus,

Σ2(x) = −

√
2x

π

∫∞
0

∫ [u]

0

ds

(
γ(s)

Γ(ν+ s+ 1/2)

)
·

(∫∞
0

e−xt

(
x(1+ t2)

2

)ν+u−1/2

ln
x(1+ t2)

2
dt

)
duds

= −π

∫∞
0

∫ [u]

0

ds

(
γ(s)

Γ(ν+ s+ 1/2)

)
· ∂
∂u

1

Γ(1/2− ν− u)

·
(
2J−ν−u(x)

sin 2π(ν+ u)
−

Jν+u(x)

sinπ(ν+ u)
+

Hν+u(x)

cosπ(ν+ u)

)
duds

=

∫∞
1

∫ [u]

0

∂

∂u
Γ(ν+ u− 1/2) (Yν+u(x) − Hν+u(x)) ds

(
γ(s)

Γ(ν+ s+ 1/2)

)
du ds . (3.49)

Here we applied the Euler’s reflection formula Γ(z)Γ(1−z) = πcosec(πz), and the well–known property of
the Bessel functions which was noted in equation (3.9). Summing (3.48) and (3.49) we have the desired
integral representation (3.44).

Remark 3.12. Another two linearly independent solutions of the Bessel homogeneous differential equa-
tion are the Hankel functions H(1)

ν and H(2)
ν which can be expressed as [130, p. 73]

H(1)
ν (x) =

J−ν(x) − e−νπiJν(x)

i sin(νπ)
, (3.50)

H(2)
ν (x) =

J−ν(x) − eνπiJν(x)

−i sin(νπ)
, (3.51)

which build the third kind Neumann series:

G(1)
ν (z) :=

∞∑
n=1

εnH
(1)
ν+n(z), G(2)

ν (z) :=

∞∑
n=1

ϕnH
(2)
ν+n(z) .

Using formulae (3.50), (3.51) we see that integral expressions for third kind Neumann series are linear
combinations of similar fashion integrals achieved for Nν(x) in Theorem A. �
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Kapteyn series

The series of the type

Kν(z) :=

∞∑
n=1

αn Jν+n ((ν+ n)z) , z ∈ C, (4.1)

where ν, αn are constants and Jν stands for the Bessel function of the first kind of order ν, is called a
Kapteyn series of the first kind. Willem Kapteyn was the first who investigated such series in 1893, in
his important memoir [47]. Kapteyn series have been considered in a number of mathematical physics
problems. For example, the solution of the famous Kepler’s equation [26, 62, 88]

E− ε sinE = M,

where M ∈ (0, π), ε ∈ (0, 1], can be expressed via a Kapteyn series of the first kind:

E = M+ 2

∞∑
n=1

sin(nM)

n
Jn(nε);

see the integral expression for E obtained in [26, p. 1333]. That Kepler’s problem was for the first time
analytically solved by Lagrange [52], and then the solution rediscovered half a century later by Bessel in
[11], in which he introduced the famous functions named after him. See also [18] for more details.

There are also Kapteyn series of the second kind, studied in detail e.g. by Nielsen [80]. Such series are
defined by the terms consisting of a product of two Bessel function of the first kind:

∞∑
n=1

βnJµ+n

((
µ+ ν

2
+ n

)
z

)
Jν+n

((
µ+ ν

2
+ n

)
z

)
, z ∈ C.

Summations for second kind Kapteyn series are obtained in [55, 56, 57]. More about Kapteyn series of
the first and second kind one can find in [123]. Also, in [86, 87] we can find some asymptotic formulae
and estimates for sums of special kind of Kapteyn series.

The importance of Kapteyn series extends from pulsar physics [55] through radiation from rings of
discrete charges [56, 125], electromagnetic radiation [110], quantum modulated systems [16, 57], traffic

39
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queueing problems [20, 21] and to plasma physics problems in ambient magnetic fields [54, 111]. For
more details see also the paper [124].

In [46] Kapteyn concluded, that it is possible to expand an arbitrary analytic function into a series of
Bessel functions of the first kind (4.1), see for example [22, 46, 130]. Namely, let f be a function which
is analytic throughout the region

Da =

{
z ∈ C : Ω(z) =

∣∣∣∣∣z exp{
√
1− z2}

1+
√
1− z2

∣∣∣∣∣ ≤ a
}
,

with a ≤ 1. Then,

f(z) = α0 + 2

∞∑
n=1

αnJn(nz), z ∈ Da,

where
αn =

1

2πi

∮
Θn(z)f(z)dz

and the path of integration is the curve on which Ω(z) = a. Here the function Θn is the so-called
Kapteyn polynomial defined by

Θ0(z) =
1

z
, Θn(z) =

1

4

[n2 ]∑
k=0

(n− 2k)2(n− k− 1)!

k!

(nz
2

)2k−n

, n ∈ N .

Series Kν(z) is convergent and represents an analytic function (see [130, p. 559]) throughout the domain

Ω(z) < lim inf
n→∞ |αn|−1/(ν+n).

But, when z = x ∈ R, then the convergence region depends on the nature of the sequence {αn}n∈N. This
question will be tested by using Landau’s bounds (2.22), (2.23) for Jν in the proof of Theorem 4.1 below.

Motivated by the above applications in mathematical physics the main objective of this chapter is to
establish two different type integral representation formulae for the Kapteyn series of the first kind.
The first one is a double definite integral representation, while the second type is an indefinite integral
representation formula. Also, we establish an integral representation for the special kind of Kapteyn–type
series.

Let us mention, that our main findings are associated with the published paper Baricz et al [8] and with
the unpublished paper [41].

4.1 Integral representation of Kapteyn series

In this section our aim is to deduce the double definite integral representation of the Kapteyn series Kν(z).
We shall replace z ∈ C with x > 0 and assume that the behavior of (αn)n∈N ensures the convergence of
the series (4.1) over a proper subset of R+.
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Theorem 4.1. (Á. Baricz, D. Jankov and T. K. Pogány [8]) Let α ∈ C1(R+), α|N = (αn)n∈N and

assume that series
∞∑
n=1

n−1/3αn absolutely converges. Then, for all ν > −3/2 and

x ∈
(
0, 2min

{
1, e−1

(
lim sup
n→∞ |αn|1/n

)−1})
=: Iα

we have the integral representation

Kν(x) = −

∫∞
1−ν

∫ [u−ν]+ν

ν

∂

∂u

(
u−u Γ(u+ 1/2) Ju

(
ux
))

ds

(
ss α(s− ν)

Γ(s+ 1/2)

)
duds . (4.2)

Proof. Let us first establish the convergence conditions for the Kapteyn series of the first kind Kν(x).
For this purpose we use Landau’s bounds (2.22), (2.23) for the first kind Bessel function introduced in
Chapter 2. It is easy to see that there holds the estimation

|Kν(x)| ≤ max
{
bL,

cL

x1/3

} ∞∑
n=1

|αn|

(n+ ν)1/3
,

and thus the series (4.1) converges for all x > 0 when
∞∑
n=1

n−1/3αn absolutely converges.

Now, recall the following integral representation for the Bessel function [35, p. 902]

Jν(z) =
(z/2)ν√

π Γ(ν+ 1/2)

∫1
−1

eizt(1− t2)ν−1/2 dt , z ∈ C, <(ν) > −1/2, (4.3)

and thus, having in mind the definition of Kν(x) in what follows we suppose that ν > −3/2. Replacing
(4.3) into (4.1) we have

Kν(x) =

√
x

2π

∫1
−1

eiνxt

(
x(1− t2)

2

)ν−1/2

Dα(t) dt, x > 0, (4.4)

where Dα(t) is the Dirichlet series

Dα(t) :=

∞∑
n=1

αn(ν+ n)ν+n

Γ(n+ ν+ 1/2)
exp

(
−n ln

2

eixtx(1− t2)

)
. (4.5)

For the convergence of (4.5) we find that the related radius of convergence equals

ρ−1
K = e lim sup

n→∞ |αn|1/n .

So, the convergence domain of Dα(t) is x ∈ (0, 2ρK). Moreover, the Dirichlet series’ parameter needs to
have positive real part [48, 95], i.e.

<

(
ln

2

eitxx(1− t2)

)
= ln

2

x(1− t2)
> ln

2

x
> 0, |t| < 1 ,

and hence the additional convergence range is x ∈ (0, 2). Collecting all these estimates, we deduce that
the desired integral expression exists for x ∈ Iα.
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Expressing (4.5) first by virtue of (2.11) as the Laplace–integral, then transforming it by condensed
Euler–Maclaurin formula (2.12), we get

Dα(t) = ln
2

eixtx(1− t2)

∫∞
0

(
eixtx(1− t2)

2

)u [u]∑
n=1

αn(ν+ n)ν+n

Γ(ν+ n+ 1/2)
du

= −

∫∞
0

∫ [u]

0

(
eixtx(1− t2)

2

)u
ln

eixtx(1− t2)

2
ds

(
α(s)(ν+ s)ν+s

Γ(ν+ s+ 1/2)

)
du ds . (4.6)

Combination of (4.4) and (4.6) yields

Kν(x) = −

√
x

2π

∫∞
0

∫ [u]

0

ds

(
α(s)(ν+ s)ν+s

Γ(ν+ s+ 1/2)

)
×

(∫1
−1

eix(ν+u)t
(x(1− t2)

2

)ν+u−1/2

ln
eixtx(1− t2)

2
dt

)
du ds . (4.7)

Denoting

Jx(u) :=

∫1
−1

ei(ν+u)xt

(
x(1− t2)

2

)ν+u−1/2

ln
eixtx(1− t2)

2
dt ,

we have ∫
Jx(u) du =

√
2π

x

Γ(ν+ u+ 1/2)

(ν+ u)ν+u
Jν+u ((ν+ u)x) ,

that is

Jx(u) =

√
2π

x

∂

∂u

(
Γ(ν+ u+ 1/2)

(ν+ u)ν+u
Jν+u ((ν+ u)x)

)
. (4.8)

Now, by virtue of (4.7) and (4.8) we conclude that

Kν(x) = −

∫∞
1

∫ [u]

0

∂

∂u

(
Γ(ν+ u+ 1/2)

(ν+ u)ν+u
Jν+u

(
(ν+ u) x

))
ds

(
α(s)(ν+ s)(ν+s)

Γ(ν+ s+ 1/2)

)
du ds ,

and the change of variables ν+ t 7→ t, t ∈ {u, s} completes the proof of (4.2).

4.2 Another integral representation of Kapteyn series through

Bessel differential equation

In the following, we deduce another integral representation for Kapteyn series (4.1), by using the fact
that the Bessel functions of the first kind are solutions of the Bessel differential equation

x2y ′′ + xy ′ + (x2 − ν2)y = 0. (4.9)

This in turn implies that Jν+n satisfies

x2J ′′n+ν(x) + xJ ′n+ν(x) + (x2 − (n+ ν)2)Jn+ν(x) = 0,
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and thus taking x 7→ (ν+ n)x we obtain

x2(ν+ n)2J ′′ν+n ((ν+ n)x) + x(ν+ n)J ′ν+n ((ν+ n)x) + (ν+ n)2(x2 − 1)Jν+n ((ν+ n)x) = 0 . (4.10)

Multiplying (4.10) by αn, then summing up that expression in n ∈ N we arrive at

x2K ′′ν(x) + xK ′ν(x) + (x2 − ν2)Kν(x)

=

∞∑
n=1

(
x2 − ν2 + (1− x2)(ν+ n)2

)
αnJn+ν

(
(ν+ n)x

)
=: Lν(x); (4.11)

the right-hand side expression Lν(x) defines the so–called Kapteyn series of Bessel functions associated
with Kν(x).

Our main results of this section read as follows.

Theorem 4.2. (Á. Baricz, D. Jankov and T. K. Pogány [8]) For all ν > −3/2 the particular solution of
the nonhomogeneous Bessel–type differential equation

x2z ′′ + xz ′ + (x2 − ν2)z = Lν(x) , (4.12)

with nonhomogeneous part (4.11), represents a Kapteyn series z = Kν(x) of order ν. Moreover, let

α ∈ C1(R+), α|N = (αn)n∈N and assume that series
∞∑
n=1

n5/3αn absolutely converges. Then, for all

x ∈ Iα we have the integral representation

Lν(x) = −

∫∞
1−ν

∫ [u−ν]+ν

ν

∂

∂u

(
u−u Γ(u+ 1/2) Ju(ux)

)
× ds

(
ss
(
(1− x2)s2 + x2 − ν2

)
α(s− ν)

Γ(s+ 1/2)

)
duds . (4.13)

Proof. Equation (4.12) we established already in the beginning of this section. Further, since associated
Kapteyn series Lν(x) is a linear combination of two Kapteyn–series, reads as follows

Lν(x) = (x2 − ν2)Kν(x) + (1− x2)

∞∑
n=1

(ν+ n)2αnJν+n

(
(ν+ n)x

)
,

the uniform convergence of the second series can be easily recognized (by Landau’s bounds) to be such

that
∞∑
n=1

n5/3|αn| <∞. Making use of Theorem 4.1 with αn 7→ (
(1− x2)(ν+ n)2 + x2 − ν2)αn, we get

the statement, the x–range for the integral expression (4.13) remains unchanged.

Below, we shall need the Bessel functions of the second kind of order ν (or MacDonald functions) Yν
which is defined by equation (3.9), in Chapter 2:

Yν(x) = cosec(πν) (Jν(x) cos(πν) − J−ν(x)) , ν 6∈ Z, | arg(z)| < π.

Remember that linear combination of Jν and Yν gives the particular solutions of homogeneous Bessel
differential equation (4.9), when ν ∈ Z. On the other hand, when ν /∈ Z, the particular solution is given
as the linear combination of the Bessel functions of the first kind, Jν and J−ν.
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Theorem 4.3. (Á. Baricz, D. Jankov and T. K. Pogány [8]) Let the situation be the same as in Theorem
4.2. Then we have

Kν(x) =
Jν(x)

2

∫
1

xJ2ν(x)

(∫
Jν(x)Lν(x)

x
dx
)

dx

+
Yν(x)

2

∫
1

xY2ν(x)

(∫
Yν(x)Lν(x)

x
dx
)

dx , (4.14)

where Lν is the Kapteyn series associated with the initial Kapteyn series of Bessel functions.

Proof. It is a well–known fact that Jν and Yν are independent solutions of the homogeneous Bessel
differential equation. Thus, the solution of the homogeneous ordinary differential equation is

yh(x) = C1Yν(x) + C2Jν(x) .

Since Jν is a solution of (4.9), a guess of the particular solution is Kν(x) = Jν(x)w(x). Substituting this
form into homogeneous Bessel differential equation, we get

x2(J ′′νw+ 2J ′νw
′ + Jνw

′′) + x(J ′νw+ Jνw
′) + (x2 − ν2)Jνw = Lν(x).

Rewriting the equation as

w
(
x2J ′′ν + xJ ′ν + (x2 − ν2)Jν

)
+w ′(2x2J ′ν + xJν) +w ′′(x2Jν) = Lν(x),

and using again the fact that Jν is a solution of the homogeneous Bessel differential equation, this leads
to the solution

w =

∫
1

xJ2ν

(∫
Lν Jν

x
dx
)

dx+ C3
π

2

Yν

Jν
+ C4 ,

because ∫
1

xJ2ν
dx =

π

2

Yν

Jν
.

Therefore, the desired particular solution is

Kν(x) = Jν(x)w(x) = Jν(x)

∫
dx

1

xJ2ν

(∫
Lν Jν

x
dx
)

+ C3
π

2
Yν(x) + C4Jν(x) .

Finally, as Jν and Yν are independent functions that build up the solution yh, they do not contribute to
the particular solution yp and the constants C3, C4 can be taken to be zero.

On the other hand, taking particular solution in the form Kν(x) = Yν(x)w(x), repeating the procedure,
we arrive at

Kν(x) = Yν(x)w(x) = Yν(x)

∫
1

xY2ν

(∫
Lν Yν

x
dx
)

dx− C5
π

2
Jν(x) + C6Yν(x) ,

bearing in mind that ∫
1

xY2ν
dx = −

π

2

Jν

Yν
.

Choosing C5 = C6 = 0, we conclude the integral representation (4.14).
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4.3 Integral representation of the special kind of Kapteyn series

At the end of this chapter on Kapteyn series, we shall derive an integral representation for the special
kind of Kapteyn series, i.e. for the Kapteyn–type series

K̃
µ
ν,β(z) :=

∞∑
n=1

αnJν+βn

(
(µ+ n)z) , z ∈ C (4.15)

where ν, αn are constants, µ ∈ C and β > 0.

That representation will be useful to us in the next chapter, devoted to similar questions concerning
Schlömilch series.

Theorem 4.4. (D. Jankov and T. K. Pogány [41]) Let α ∈ C1(R+), α|N = (αn)n∈N and assume that

series
∞∑
n=1

n−1/3αn absolutely converges. Then, for all β > 0, 2(ν+ β) + 1 > 0 and

x ∈
(
0, 2min

{
1, 2β−1 ββ e−β

(
lim sup
n→∞ |αn|1/n

)−1})
=: Iα,β

we have the integral representation

K̃
µ
ν,β(x) = −

∫∞
1

∫ [u]

0

∂

∂u

(Γ(βu+ ν+ 1/2)

(µ+ u)βu+ν
Jβu+ν

(
(µ+ u) x

))
ds

(
α(s)(µ+ s)ν+βs

Γ(ν+ βs+ 1/2)

)
du ds. (4.16)

Proof. Let us first establish the convergence conditions for the Kapteyn series K̃µν,β(x). For this purpose
we use Landau’s bounds (2.22), (2.23) for the first kind Bessel function Jν, described in Chapter 2. It
holds ∣∣∣K̃µν,β(x)

∣∣∣ ≤ ∞∑
n=1

|αn| max

{
bL

(ν+ βn)1/3
,

cL

((µ+ n)x)
1/3

}
,

and thus the series (4.15) converges for all x > 0 when
∞∑
n=1

n−1/3αn absolutely converges.

In the following we need the integral representation of the Bessel function [35, p. 902]

Jν(z) =
(z/2)ν√

π Γ(ν+ 1/2)

∫1
−1

eizt(1− t2)ν−1/2 dt , z ∈ C, <(ν) > −1/2, (4.17)

and thus, having in mind the definition of K̃µν,β(x) it has to be 2(ν+β)+ 1 > 0. Substituting (4.17) into
(4.15) we get

K̃
µ
ν,β(x) =

√
x

2π

∫1
−1

eiµxt

(
x(1− t2)

2

)ν−1/2

Dα(t) dt, x > 0, (4.18)

where Dα(t) is the Dirichlet series

Dα(t) :=

∞∑
n=1

αn(µ+ n)ν+βn

Γ(ν+ βn+ 1/2)
exp

(
−n ln

(
2

eixt/βx(1− t2)

)β)
. (4.19)
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For the convergence of (4.19) we find that the related radius of convergence equals

ρ =

(
2β

e

)β(
lim sup
n→∞ |αn|1/n

)−1

.

So, the convergence domain of Dα(t) is |x| < ρ. Moreover, the Dirichlet series’ parameter needs to have
positive real part [48, 95], i.e.

<

(
ln

2β

eitxxβ(1− t2)β

)
= β ln

2

x(1− t2)
> β ln

2

x
> 0, |t| < 1 ,

and hence the additional convergence range is x ∈ (0, 2). Collecting all these estimates, we deduce that
the desired integral expression exists for x ∈ Iα,β.

Expressing (4.19) first as the Laplace–integral, then transforming it by condensed Euler–Maclaurin for-
mula, we get

Dα(t) = ln
2β

eixt (x(1− t2))
β

∫∞
0

(
eixt

(
x(1− t2)

2

)β)u [u]∑
n=1

αn(µ+ n)ν+βn

Γ(ν+ βn+ 1/2)
du

= −

∫∞
0

∫ [u]

0

(
eixt

(
x(1− t2)

2

)β)u
ln

eixt
(
x(1− t2)

)β
2β

ds

(
α(s)(µ+ s)ν+βs

Γ(ν+ βs+ 1/2)

)
du ds . (4.20)

Combination of (4.18) and (4.20) yields

K̃
µ
ν,β(x) = −

√
x

2π

∫∞
0

∫ [u]

0

ds

(
α(s)(µ+ s)ν+βs

Γ(ν+ βs+ 1/2)

)
×

(∫1
−1

eix(µ+u)t
(x(1− t2)

2

)ν+βu−1/2

ln
eixt

(
x(1− t2)

)β
2β

dt

)
duds. (4.21)

In the following, we will simplify the t–integral

Jx(u) :=

∫1
−1

ei(µ+u)xt

(
x(1− t2)

2

)ν+βu−1/2

ln
eixt

(
x(1− t2)

)β
2β

dt .

We have ∫
Jx(u) du =

∫1
−1

ei(µ+u)xt

(
x(1− t2)

2

)ν+βu−1/2

dt

=

√
2π

x

Γ(ν+ βu+ 1/2)

(µ+ u)ν+βu
Jβu+ν ((µ+ u)x) ,

that is

Jx(u) =

√
2π

x

∂

∂u

(
Γ(ν+ βu+ 1/2)

(µ+ u)ν+βu
Jβu+ν ((µ+ u)x)

)
. (4.22)

Now, by virtue of (4.21) and (4.22) we immediately get the integral representation (4.16).
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Schlömilch series

Oscar Xavier Schlömilch introduced in 1857 in his article [108] the series of the form

Sν(z) :=

∞∑
n=1

αn Jν ((ν+ n)z) , z ∈ C, (5.1)

where ν, αn are constants and Jν stands for the Bessel function of the first kind of order ν. So, this
kind series are known as Schlömilch series (of the order ν 1). Rayleigh [99] has showed that such
series play important roles in physics, because for ν = 0 they are useful in investigation of a periodic
transverse vibrations uniformly distributed in direction through the two dimensions of the membrane.
Also, Schlömilch series present various features of purely mathematical interest and it is remarkable that
a null–function can be represented by such series in which the coefficients are not all zero [130, p. 634].

It is worth of mention, that Schlömilch [108] proved that there exists a series Sf0(x) associated with any
analytic function f. Namely, according to Watson (in renewed formulation) [130, p. 619]: let f(x) be an
arbitrary function, with a derivative f ′(x) which is continuous in the interval (0, π) and which has limited
total fluctuation in this interval. Then f(x) admits of the expansion

f(x) =
a0

2
+

∞∑
m=1

amJ0(mx) =: Sf0(x), (5.2)

where

a0 = 2f(0) +
2

π

∫π
0

∫ 1
2π

0

uf ′(u sinφ) dφdu ,

am =
2

π

∫π
0

∫ 1
2π

0

uf ′(u sinφ) cos(mu) dφdu, m ∈ N

and this expansion is valid, and the series converges in (0, π).

We point out that this Schlömilch’s result may be generalized by replacing the expansion (5.2) of order
zero by Sfν(x) of arbitrary order ν, see [12], [79], [126] and [130, Ch. XIX.].

1O.X. Schlömilch considered only cases ν = 0, 1.

47
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The next generalization is suggested by the theory of Fourier series. The functions which naturally
extend Sf0(x) are Bessel functions of the second kind and Struve functions. The types of series to be
considered may be written in the forms:

1
2a0

Γ(ν+ 1)
+

∞∑
m=1

amJν(mx) + bmYν(mx)(
1
2mx

)ν ,

1
2a0

Γ(ν+ 1)
+

∞∑
m=1

amJν(mx) + bmHν(mx)(
1
2mx

)ν .

Such series, with ν = 0 have been considered in 1886 by Coates [17], but his proof of expanding an
arbitrary functions f(x) into this kind of series seems to be invalid except in some trivial case in which
f(x) is defined to be periodic (with period 2π) and to tend to zero as x→∞. Also for further subsequent
generalizations consult e.g. Bondarenko’s recent article [12] and the references therein and Miller’s
multidimensional expansion [68].

The series of much greater interest are direct generalization of trigonometrical series and they are called
generalized Schlömilch series. Nielsen studied such kind of series in his memoirs consecutively in 1899
[74, 75, 76], in 1900 [77] and finally in 1901 [78, 79]. He has given the forms for the coefficients in
the generalized Schlömilch expansion of arbitrary function and he has investigated the construction of
Schlömlich series which represent null–functions [81, p. 348]. Filon also investigated the possibility
of expanding an arbitrary function into a generalized Schlömilch series for ν = 0 [29]. Using Filon’s
method for finding coefficients in the generalized Schlömlich expansion, Watson proved a similar fashion
expansion result.

Theorem B. (G. N. Watson [130]) Let ν be a number such that −12 < ν <
1
2 ; and let f(x) be defined

arbitrarily in the interval (−π, π) subject to the following conditions: (i) the function h(x) = 2νf(x) +

xf ′(x) ∈ C1(−π, π) and it has limited total fluctuation in the interval (−π, π), and (ii) the integral∫∆
0

d
dx
(
|x|2ν{f(x) − f(0)}

)
dx , ν ∈ (−1/2, 0)

is absolutely convergent when ∆ is a (small) number either positive or negative. Then f(x) admits of the
expansion

f(x) =
1
2a0

Γ(ν+ 1)
+

∞∑
m=1

amJν(mx) + bmHν(mx)(
1
2mx

)ν ,

where

am =
1

√
π Γ(12 − ν)

∫π
−π

∫ 1
2π

0

sec2ν+1φ
d

dφ
(
{f(u sinφ) − f(0)} sin2νφ

)
cos(mu) dφdu , (5.3)

bm =
1

√
π Γ(12 − ν)

∫π
−π

∫ 1
2π

0

sec2ν+1φ
d

dφ
(
{f(u sinφ) − f(0)} sin2νφ

)
sin(mu) dφdu ,

when m > 0; the value of a0 is obtained by inserting an additional term 2Γ(ν+ 1)f(0) on the right in the
first equation of the system (5.3).

New results about Schlömilch series, which are presented in this chapter, concern to the paper by Jankov
et al. [41].



Chapter 5. Schlömilch series 49

5.1 Integral representation of Schlömilch series

In this section we will derive the double definite integral representation of the special kind of Schlömilch
series

Sµν(z) :=

∞∑
n=1

αn Jν ((µ+ n)z) , z ∈ C, (5.4)

using an integral representation of Kapteyn–type series

K̃
µ
ν,β(z) :=

∞∑
n=1

αnJν+βn

(
(µ+ n)z) , z ∈ C, β > 0 , (5.5)

which has been proven in the previous chapter, in Theorem 4.4.

It is easy to establish a connection between Schlömilch series (5.4) and Kapteyn–type series (5.5):

Sµν(x) = lim
β→0 K̃µν,β(x) . (5.6)

Using that equality, we have the following result.

Theorem 5.1. (D. Jankov and T. K. Pogány [41]) Let α ∈ C1(R+) such that the function

κ(u, v) :=
∂

∂u

(Γ(βu+ ν+ 1/2)

(µ+ u)βu+ν
Jβu+ν

(
(µ+ u) x

))
ds

(
α(s)(µ+ s)ν+βs

Γ(ν+ βs+ 1/2)

)
, β > 0

is integrable.

Let α|N = (αn)n∈N and assume that the series
∞∑
n=1

n−1/3αn absolutely converges.

Then, for all ν > −1/2 and

x ∈
(
0,min

{
2,
(

lim sup
n→∞ |αn|1/n

)−1})
=: Iα,0

we have the integral representation

Sµν(x) = −

∫∞
1

∫ [u]

0

∂

∂u

(Jν((µ+ u) x
)

(µ+ u)ν

)
ds (α(s)(µ+ s)ν) duds.

Proof. Follows immediately from Theorem 4.4, relation (5.6) and Lebesgue’s dominated convergence
theorem, because using the fact that the function κ(u, v) is integrable, we can establish the connection
between Riemann and Lebesgue integral.
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5.2 Another integral representation of Schlömilch series

In this section our aim is to derive integral representations for Schlömlich series (5.1), using Bessel
differential equation

x2y ′′ + xy ′ + (x2 − ν2)y = 0 (5.7)

analogously as we did it in the previous chapter, for the Kapteyn series.

It has already been said that Bessel functions of the first kind are particular solutions of the previous
equation, i.e. it holds

x2J ′′ν(x) + xJ ′ν(x) + (x2 − ν2)Jν(x) = 0 .

Now, taking x 7→ (ν+ n)x we obtain

x2(ν+ n)2J ′′ν ((ν+ n)x) + x(ν+ n)J ′ν ((ν+ n)x) + (x2(ν+ n)2 − ν2)Jν ((ν+ n)x) = 0 . (5.8)

Multiplying (5.8) by αn, and then summing up that expression in n ∈ N we get the following equality

x2S ′′ν(x) + xS ′ν(x) + (x2 − ν2)Sν(x) (5.9)

=

∞∑
n=1

(
1− (ν+ n)2)x2αnJν

(
(ν+ n)x

)
=: Tν(x); (5.10)

the right side expression Tν(x) defines the so–called Schlömilch series of Bessel functions associated to
Sν(x).

Now, we can derive the following theorem:

Theorem 5.2. (D. Jankov and T. K. Pogány [41]) Schlömilch series (5.1) is the solution of the nonho-
mogeneous Bessel–type differential equation

x2y ′′ + xy ′ + (x2 − ν2)y = Tν(x) , (5.11)

where Tν(x) is given with (5.10). Moreover, if we assume that α ∈ C1(R+), α|N = (αn)n∈N and that

the series
∞∑
n=1

n5/3αn absolutely converges, then for all x ∈ Iα,0 and ν > −1/2 we have the integral

representation

Tν(x) = −x2
∫∞
1

∫ [u]

0

∂

∂u

(
Jν
(
(ν+ u)x

)
(ν+ u)ν

)
ds

(
α(s)

(
1− (ν+ s)2

)
(ν+ s)ν

)
duds . (5.12)

Proof. We already showed, in the first lines of this section, that Schlömilch series (5.1) is a solution of
(5.11).

Further, from (5.10) we have

Tν(x) = x2Sν(x) − x2
∞∑
n=1

(ν+ n)2αn Jν ((ν+ n)x) ,
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and by Landau’s bound it follows that the second series converges absolutely when
∞∑
n=1

n5/3|αn| < ∞
absolutely converges. Using the Theorem 5.1 with αn 7→ (

1−(ν+n)2
)
αn, we get the integral expression

(5.12).

In what follows our aim is to present a new integral representation of the Schlömilch series (5.1), using
the Bessel differential equation (5.9).

Theorem 5.3. (D. Jankov and T. K. Pogány [41]) Let α ∈ C1(R+), α|N = {αn}n∈N and assume that

series
∞∑
n=1

n5/3αn absolutely converges. Then, for all ν > −1/2 and x ∈ Iα,0 we have

Sν(x) =
Jν(x)

2

∫
1

xJ2ν(x)

(∫
Jν(x)Tν(x)

x
dx
)

dx

+
Yν(x)

2

∫
1

xY2ν(x)

(∫
Yν(x)Tν(x)

x
dx
)

dx , (5.13)

where Tν is the Schlömilch series, given by (5.10).

Proof. Let us consider the Bessel function of the second kind of order ν (or MacDonald function) Yν
which is defined by

Yν(x) = cosec(πν) (Jν(x) cos(πν) − J−ν(x)) , ν 6∈ Z, | arg(z)| < π.

The homogeneous solution of the Bessel differential equation is given by

yh(x) = C1Yν(x) + C2Jν(x) ,

where Jν and Yν are independent solutions of the Bessel differential equation.

As Jν is a solution, we seek for the particular solution yp in the form yp(x) = Jν(x)w(x). Substituting
this form into (5.9), we have

x2(J ′′νw+ 2J ′νw
′ + Jνw

′′) + x(J ′νw+ Jνw
′) + (x2 − ν2)Jνw = Tν(x).

If we write previous equation in the following form

w
(
x2J ′′ν + xJ ′ν + (x2 − ν2)Jν

)
+w ′(2x2J ′ν + xJν) +w ′′(x2Jν) = Tν(x),

using the fact that Jν is a solution of the homogeneous Bessel differential equation, we get the solution

w =

∫
1

xJ2ν

(∫
Tν Jν

x
dx
)

dx+ C3
π

2

Yν

Jν
+ C4 ,

because ∫
1

xJ2ν
dx =

π

2

Yν

Jν
.
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So, we have the particular solution

Sν(x) = Jν(x)w(x) = Jν(x)

∫
1

xJ2ν

(∫
Tν Jν

x
dx
)

dx+ C3
π

2
Yν(x) + C4Jν(x) .

Using the fact that yh is formed by independent functions Jν and Yν, that functions do not contribute
to the particular solution yp and the constants C3, C4 can be taken to be zero.

Analogously, taking particular solution in the form yp(x) = Yν(x)w(x) and using the equality∫
1

xY2ν
dx = −

π

2

Jν

Yν

we get

Sν(x) = Yν(x)w(x) = Yν(x)

∫
1

xY2ν

(∫
Tν Yν

x
dx
)

dx− C5
π

2
Jν(x) + C6Yν(x) .

Again, choosing C5 = C6 = 0, we get the integral representation (5.13).



Chapter 6

Hurwitz–Lerch Zeta function

A general Hurwitz–Lerch Zeta function Φ(z, s, a) is defined by (see, e.g. [28, p. 27, Eq. 1.11 (1)],
[115, p. 121 et seq.])

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s
, (6.1)

where a ∈ Z\Z−
0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1. The Hurwitz–Lerch Zeta function Φ(z, s, a)

can be continued meromorphically to the whole complex s–plane, except for a simple pole at s = 1 with
its residue equal to 1. It is also known the integral representation [28, p. 27, Eq. 1.11 (3)]

Φ(z, s, a) =
1

Γ(s)

∫∞
0

ts−1e−at

1− ze−t
dt =

1

Γ(s)

∫∞
0

ts−1e−(a−1)t

et − z
dt ,

where <(a) > 0; <(s) > 0 when |z| ≤ 1 (z 6= 1); <(s) > 1 when z = 1. Special cases of the function (6.1)
one can found in the article Srivastava et al. [119, p. 488–489]:

• Riemann Zeta function

ζ(s) :=

∞∑
n=0

1

(n+ 1)s
= Φ(1, s, 1), <(s) > 1 ;

• Hurwitz–Zeta function

ζ(s, a) :=

∞∑
n=0

1

(n+ a)s
= Φ(1, s, a), <(s) > 1, a ∈ C\Z−

0 ;

• Lerch Zeta function

ls(ξ) :=

∞∑
n=0

e2nπiξ

(n+ 1)s
= Φ(e2πiξ, s, 1), <(s) > 1, ξ ∈ R .

The general Hurwitz–Lerch Zeta function also contains some functions that are very important in Analytic
Number Theory such as

53
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• The Polylogarithmic (or de Jonquère’s function)

Lis(z) :=

∞∑
n=1

zn

ns
= zΦ(z, s, 1),

defined for s ∈ C, when |z| < 1; <(s) > 1 when |z| = 1 and

• the Lipschitz–Lerch Zeta function

φ(ξ, s, a) :=

∞∑
n=0

e2nπiξ

(n+ a)s
= Φ(e2πiξ, s, a),

where a ∈ C\Z−
0 , <(s) > 0 when ξ ∈ R\Z; <(s) > 1 when ξ ∈ Z, which was first studied by

Rudolf Lipschitz (1832–1903) and Matyáš Lerch (1860–1922) in connection with Dirichlet’s famous
theorem on primes in arithmetic progressions.

We note that the results presented in this chapter are mostly from the published papers Jankov et al.
[42] (Section 6.1), Srivastava et al. [117] (Sections 6.2.1 and 6.2.2) and Saxena et al. [107] (Sections 6.3,
6.4, 6.5, 6.6 and 6.7).

6.1 Extended general Hurwitz–Lerch Zeta function

Lin and Srivastava introduced and investigated, in 2004, a generalization of the Hurwitz–Lerch Zeta
function (6.1) in the following form [60, p. 727, Eq. (8)]:

Φ(ρ,σ)
µ,ν (z, s, a) =

∞∑
n=0

(µ)ρn

(ν)σn

zn

(n+ a)s
. (6.2)

Here µ ∈ C; a, ν ∈ C\Z−
0 ; ρ, σ ∈ R+; ρ < σ when s, z ∈ C; ρ = σ for z ∈ C; ρ = σ, s ∈ C for |z| < 1;

ρ = σ, <(s− µ+ ν) > 1 for |z| = 1.

In 2008, Garg et al. introduced [30, Eq. (1.7)], [31] the extended general Hurwitz–Lerch Zeta function:

Φα,β;γ(z, s, r) =

∞∑
n=0

(α)n(β)n

(γ)nn!

zn

(n+ r)s
, (6.3)

where γ, r 6∈ Z−
0 = {0,−1,−2, · · · }, s ∈ C,<(s) > 0 when |z| < 1 and <(γ+ s− α− β) > 0 when |z| = 1.

Our first main object is to show that the integral expression [30, Eq. (2.1)] for the extended general
Hurwitz–Lerch Zeta function Φα,β;γ(z, s, r) is a corollary of the integral representation formula [89, Eq.
(9)] for the Mathieu (a,λ)–series, given by Pogány.

Namely, Pogány in [89], introduced the so–called Mathieu (a,λ)–series

Ms(a,λ; r) =

∞∑
n=0

an

(λn + r)s
, r, s > 0 , (6.4)
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deriving closed form integral representation and bilateral bounding inequalities for Ms(a,λ; r), general-
izing at the same time some earlier results by Cerone and Lenard [15], Qi [96], Srivastava and Tomovski
[121] and others.

The series (6.4) is assumed to be convergent; the sequences a := (an)n∈N0 ,λ := (λn)n∈N0 are positive.
Following the convention that (λn) is monotone increasing divergent, we have

λ : 0 ≤ λ0 < λ1 < · · · < λn −−−−→
n→∞ ∞ .

6.1.1 Integral representation for Φα,β;γ(z, s, r)

Let us now derive an integral representation for the extension of general Hurwitz–Lerch Zeta function
(6.3), using an integral expression for Mathieu (a,λ)–series.

Pogány reported [89, Theorem 1] the integral representation formula for Mathieu (a,λ)–series which
we already introduced in Chapter 2, (2.14). Recalling the meaning of the Pochhammer symbol (τ)n =

Γ(τ+ n)/Γ(τ), (τ)0 = 1, comparing Ms (6.4) and Φα,β;γ (6.3) we obtain

a(x) =
Γ(γ)

Γ(α)Γ(β)

Γ(α+ x)Γ(β+ x) zx

Γ(γ+ x)Γ(x+ 1)
, λ(x) = I(x) ≡ x, x ∈ R+, (6.5)

where I denotes identical mapping. By this setting relation (2.14) becomes

Ms(a(x), I(x); r) ≡ Φα,β;γ(z, s, r) =
1

rs
+ s

∫∞
1

∫ [x]

0

a(u) + a ′(u){u}

(r+ x)s+1
dx du , (6.6)

where the inner u–integral is actually the Laplace integral expression of associated Dirichlet series [94]

Da(x) =

∞∑
n=0

ane−λnx ≡
∞∑
n=0

(α)n(β)n

(γ)n

(
ze−x

)n
n!

= 2F1

[ α, β
γ

∣∣∣ ze−x
]
.

Here, as usual, 2F1 denotes the familiar Gaussian hypergeometric function. Now, it immediately follows
that

Φα,β;γ(z, s, r) =
1

Γ(s)

∫∞
0

xs−1e−rx
2F1

[ α, β
γ

∣∣∣ ze−x
]

dx ,

which is the same as the integral formula [30, Eq. (2.1)] by Garg et al. when parameter s > 0.

If we substitute the relation (6.5) in the integrand of (6.6) we get a new double integral expression
formula for the extended general Hurwitz–Lerch Zeta function.

Theorem 6.1. (D. Jankov, T. K. Pogány and R. K. Saxena [42]) Suppose that α,β ∈ R, γ ∈ R\Z−
0 , r > 0,

<(s) > 0 and z ∈ (0, 1]. Then we have

Φα,β;γ(z, s, r) =
1

rs
+

Γ(γ) s

Γ(α)Γ(β)

{∫∞
1

∫ [x]

0

Γ(α+ u)Γ(β+ u) zu

Γ(γ+ u)Γ(u+ 1)

dx du
(r+ x)s+1

+

∫∞
1

∫ [x]

0

{u}
d

du
Γ(α+ u)Γ(β+ u) zu

Γ(γ+ u)Γ(u+ 1)

dx du
(r+ x)s+1

}
. (6.7)
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6.1.2 Bounding inequalities for Φα,β;γ(z, s, r)

In order to obtain sharp bilateral bounding inequalities for Φα,β;γ(z, s, r), our main apparatus will be the
integral representation (6.7). To employ the condition 0 ≤ {u} < 1 in evaluating the second right–hand
side integral in (6.7) we should know the monotonicity intervals of

b(x) :=
Γ(α+ x)Γ(β+ x) zx

Γ(γ+ x)Γ(x+ 1)
, x ∈ [1,∞) .

Writing ψ =
(

ln Γ
) ′, for the psi or digamma function, which was introduced in Chapter 2, we obtain

b ′(x) = b(x)
(
ψ(α+ x) +ψ(β+ x) + ln z−ψ(γ+ x) −ψ(x+ 1)

)
= b(x)

∞∑
k=1

{ 1

k+ x
+

1

k+ γ+ x− 1

−
1

k+ α+ x− 1
−

1

k+ β+ x− 1

}
+ b(x) ln z . (6.8)

Under the assumptions α,β, γ > 0 it is not difficult to show that b ′(x) < 0 for all α,β, γ > 0, z ∈ (0, 1]

when
∆ := (αβ− γ)2 − (α+ β− γ− 1)

(
α(β− 1)γ+ (α− γ)β

)
< 0 .

Thus, we arrive at the following bilateral bounding inequality result.

Theorem 6.2. (D. Jankov, T. K. Pogány and R. K. Saxena [42]) Let α,β, γ be positive and assume that

∆ < 0 and α+ β− γ < min {1, <(s)} . (6.9)

Then for all <(s), r > 0, z ∈ (0, 1] we have

L < Φα,β;γ(z, s, r) ≤ R , (6.10)

where

R := r−s +
Γ(γ)s

Γ(α)Γ(β)

∫∞
1

∫ [x]

0

Γ(α+ u)Γ(β+ u) zu

Γ(γ+ u)Γ(u+ 1)

dx du
(r+ x)s+1

(6.11)

L := R+
Γ(γ)s

Γ(α)Γ(β)

∫∞
1

Γ(α+ [x])Γ(β+ [x]) z[x]

Γ(γ+ [x])Γ([x] + 1)

dx
(r+ x)s+1

− r−s . (6.12)

In (6.10) both bounds are sharp in the sense that 0 ≤ {u} < 1 .

Proof. Let us consider the integral (6.7). First, summing up the four fractions inside the sum in (6.8)
we get in the numerator the quadratic polynomial in X := k+ x− 1:

P2(X) := (α+ β− γ− 1)X2 + 2(αβ− γ)X+ α(β− 1)γ+ (α− γ)β .

Since ln z ≤ 0 for z ∈ (0, 1] and α+β−γ− 1 < 0, finally from the discriminant ∆ < 0 we easily conclude
that b ′(x) < 0, because b(x) > 0 for all x > 0, having positive α,β and γ. Recalling the convergence
condition α + β − γ < <(s) of the Hurwitz–Lerch Zeta function Φα,β;γ(z, s, r) we arrive at constraint
(6.9) that enables suitable estimation of the integrand in (6.7).
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On the other hand by the application of elementary inequality 0 ≤ {u} < 1 to the monotone decreasing
b(u) we deduce b ′(u) < {u}b ′(u) ≤ 0 and integrating this estimate in

(
0, [x]

)
, we arrive at

b
(
[x]) − b(0) <

∫ [x]

0

{u}b ′(u) du ≤ 0 .

Integrating the left–hand–side estimate on the range (0,∞) with respect to the measure (r+ x)−s−1dx,
one gets ∫∞

1

Γ(α+ [x])Γ(β+ [x]) z[x]

Γ(γ+ [x])Γ([x] + 1)

dx
(r+ x)s+1

−
Γ(α)Γ(β)

sΓ(γ)rs
<

∫∞
1

∫ [x]

0

{u}b ′(u)

(r+ x)s+1
dx du ≤ 0 .

Now, employing this double–estimate to (6.7), straightforward algebra results in the assertion of Theorem
6.2.

Now, we will need some estimates for the ψ function. Elezović et al. reported [27, Corollary 3] the double
inequality

ln
(
x+ 1/2

)
−
1

x
< ψ(x) < ln

(
x+ e−C

)
−
1

x
, x > 0 ,

such that we transform easily to

ln (x+ 1/2) < ψ(x+ 1) < ln (x+ e−C) , x > 0; (6.13)

in [97, Theorem 1], it was shown that 1/2 and exp{−C} in (6.13) are sharp constants, see also [10].

Theorem 6.3. (D. Jankov, T. K. Pogány and R. K. Saxena [42]) Suppose that <(s), r > 0 and assume
that (α,β, γ, z) ∈ R3+ × (0, 1] and

(
α+ 1/2

)(
β+ 1/2

)
>
(
γ+ e−C

)(
1+ e−C

)
.

Then we have
R ≤ Φα,β;γ(z, s, r) < L . (6.14)

Here R and L are given with (6.11) and (6.12).

Proof. Let α,β, γ ∈ R+, z ∈ (0, 1]. Consider

b ′(x) = b(x)
(
ψ(α+ x) +ψ(β+ x) + ln z−ψ(γ+ x) −ψ(x+ 1)

)
.

Since b(x) > 0, the expression

Ψ(x) = ψ(α+ x) +ψ(β+ x) + ln z−ψ(γ+ x) −ψ(x+ 1)

controls the sign of b ′(x). Making use of (6.13) we conclude

Ψ(x) > ln

(
(2α+ 2x− 1)(2β+ 2x− 1)z

4(γ+ x− 1+ e−C)(x+ e−C)

)
. (6.15)
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If the right–hand–side expression in (6.15) is positive, then by obvious transformations we get

(2α+ 2x− 1)(2β+ 2x− 1)z > 4(γ+ x− 1+ e−C)(x+ e−C)

≥ 4(γ+ e−C)(1+ e−C) ,

that is (
α+ 1/2

)(
β+ 1/2

)
>
(
γ+ e−C

)(
1+ e−C

)
. (6.16)

Consequently, (6.16) suffices for b ′(x) > 0, x ≥ 1. That means

0 ≤
∫ [x]

0

{u}b ′(u) du < b
(
[x]) − b(0) .

Now, following the same lines of the proof of Theorem 6.2, we arrive at the asserted result (6.14).

Finally, setting z = 1, in the Theorem 6.2, we get another bounding inequality.

Theorem 6.4. (D. Jankov, T. K. Pogány and R. K. Saxena [42]) Let α,β, γ be positive, <(s) > 0 and
assume that ∆ < 0 and 1 < α+ β− γ < <(s). Then for all r > 0 we have

R ≤ Φα,β;γ(1, s, r) < L , (6.17)

where R and L are given by (6.11) and (6.12).

Proof. Let us consider the integral (6.7). For z = 1 (6.8) reduces to

b ′(x) = b(x)
(
ψ(α+ x) +ψ(β+ x) −ψ(γ+ x) −ψ(x+ 1)

)
.

As in the proof of Theorem 6.2, summing up the four fractions inside the sum in (6.8) we get in the
numerator the same quadratic polynomial P2(X). Since 1 < α + β − γ < <(s) and ∆ < 0 and b(x) > 0
we can conclude that b ′(x) > 0.

The remaining part of the proof is the same as in Theorem 6.3, so we can easily get inequality (6.17).

6.2 Extended Hurwitz–Lerch Zeta function

Srivastava et al., in the article [119], investigated the family of extended Hurwitz-Lerch Zeta functions by
following the ideas from an earlier paper by Lin and Srivastava [60] dealing with an interesting extension
and unification of the Hurwitz-Lerch Zeta function Φ(z, s, a), its various known generalizations and
investigations carried out by Gupta et al. [37] and others [114, 115, 116]. We recall here the definition
of this already investigated family:

Φ
(ρ,σ,κ)
λ,µ;ν (z, s, a) :=

∞∑
n=0

(λ)ρn(µ)σn

(ν)κnn!

zn

(n+ a)s
, (6.18)

where λ, µ ∈ C; a, ν ∈ C\Z−
0 ; ρ, σ, κ ∈ R+; κ − ρ − σ > −1 for s, z ∈ C; κ − ρ − σ = −1 and s ∈ C for

|z| < δ∗ := ρ−ρσ−σκκ; κ− ρ− σ = −1 and <(s+ ν− λ− µ) > −1 and |z| = δ∗.
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The extended Hurwitz–Lerch Zeta function Φ(ρ,σ,κ)
λ,µ;ν (z, s, a) has the following interesting special or limit

cases, which are also described in [119, p. 491–492]:

• For λ = ρ = 1 it holds
Φ

(1,σ,κ)
1,µ;ν (z, s, a) = Φ(σ,κ)

µ,ν (z, s, a)

in terms of the generalized Hurwitz–Lerch Zeta function Φ(σ,κ)
µ,ν (z, s, a) studied by Lin and Srivas-

tava [60].

• If we set ρ = σ = κ = 1 in (6.18), we have the generalized Hurwitz–Lerch Zeta functionΦλ,µ;ν(z, s, a)

studied by Garg et al. [30] and Jankov et al. [43], which is described in the previous section:

Φ
(1,1,1)
λ,µ;ν (z, s, a) = Φ

(σ,κ)
λ,µ;ν(z, s, a) .

• Upon setting ρ = σ = κ = 1 and λ = ν, the extended Hurwitz–Lerch Zeta function reduces to the
function Φ∗µ(z, s, a) studied by Goyal and Laddha [34, p. 100, Eq. 1.5]:

Φ
(1,1,1)
ν,µ;ν (z, s, a) = Φ∗µ(z, s, a) .

• For µ = ρ = σ = 1 and z 7→ z/λ, by the familiar principle of confluence, the limit case of (6.18),
when λ→∞, yields the Mittag–Leffler type function E(a)

κ,ν(s; z) studied by Barnes [9] (see also [28,
Section 18.1]), that is

lim
λ→∞

{
1

Γ(ν)
Φ

(1,1,κ)
λ,1;ν

( z
λ
, s, a

)}
=

∞∑
n=0

zn

(n+ a)s · Γ(ν+ κn)
=: E(a)

κ,ν(s; z) ,

where a, ν ∈ C\Z−
0 ; <(κ) > 0; s, z ∈ C, in which the parameter κ ∈ R+ has been replaced, in a

rather straightforward way, by κ ∈ C with <(κ) > 0.

Another two limit cases of the (6.18) are given by

•

Φ
∗(σ,κ)
µ;ν (z, s, a) := lim

|λ|→∞
{
Φ

(ρ,σ,κ)
λ,µ;ν

( z
λρ
, s, a

)}
=

∞∑
n=0

(µ)σn

(ν)κn · n!

zn

(n+ a)s
.

Here µ ∈ C; a, ν ∈ C\Z−
0 ; σ, κ ∈ R+; s ∈ C when |z| < σ−σκκ; <(s+ν−µ) > 1 when |z| = σ−σκκ;

and

•

Φ∗(σ)
µ (z, s, a) := lim

min{|λ|, |ν|}→∞
{
Φ

(ρ,σ,κ)
λ,µ;ν

(
zνκ

λρ
, s, a

)}
=

∞∑
n=0

(µ)σn

n!

zn

(n+ a)s
, (6.19)

where µ ∈ C; a ∈ C\Z−
0 ; 0 < σ < 1 and s, z ∈ C; σ = 1 and s ∈ C when |z| < σ−σ; σ = 1 and

<(s−µ) > 1 when |z| = σ−σ, which, for σ = 1, reduces at once to the function Φ∗µ(z, s, a). In fact,
the function (6.19) can also be deduced as a special case of the generalized Hurwitz–Lerch function
Φ

(σ,κ)
µ,ν (z, s, a), when ν = κ = 1. Thus, by comparing the series definition in (6.19) with those in

(6.2) and (6.18), we get the following direct relationships:

Φ∗(σ)
µ (z, s, a) = Φ

(κ,σ,κ)
ν,µ;ν (z, s, a) = Φ

(σ,1)
µ,1 (z, s, a) .
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Srivastava et al. [119] also gave a natural further generalization of the function (6.18) introducing the
Fox–Wright generalized hypergeometric function pΨ∗q in the kernel, defined by (2.18), in Chapter 2. This
extended Hurwitz-Lerch Zeta functions is described in the following definition.

Definition 6.5. (H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena [119]) The family of the
extended Hurwitz–Lerch Zeta functions:

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a),

with p+ q upper parameters and p+ q+ 2 lower parameters, is given by

Φ
(ρ,σ)
λ;µ (z, s, a) = Φ

(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a) :=

∞∑
n=0

p∏
j=1

(λj)nρj

n!
q∏
j=1

(µj)nσj

zn

(n+ a)s
(6.20)

where p, q ∈ N0; λj ∈ C, j = 1, · · · , p; a, µj ∈ C \ Z−
0 , j = 1, · · · , q; ρj, σk ∈ R+, j = 1, · · · , p;

k = 1, · · · , q; ∆ > −1 when s, z ∈ C; ∆ = −1 and s ∈ C when |z| < ∇; ∆ = −1 and <(Ξ) > 1
2 when

|z| = ∇. Here ∆ and ∇ are given with (2.19) and (2.20), respectively, and

Ξ := s+

q∑
j=1

µj −

p∑
j=1

λj +
p− q

2
.

The special case of the function (6.20) when p − 1 = q = 1 corresponds to the above–investigated
generalized Hurwitz–Lerch Zeta function Φ(ρ,σ,κ)

λ,µ;ν (z, s, a), defined by (6.18).

In this section, we will first derive a double-integral expression for Φ(ρ,σ)
λ;µ (z, s, a) by using a Laplace

integral representation of Dirichlet series, analogously as we did in the previous section, for the extended
general Hurwitz–Lerch Zeta function. Finally, by employing the so-derived integral expressions, we shall
obtain extensions and generalizations of some earlier two-sided inequalities for the extended Hurwitz-
Lerch Zeta function Φ(ρ,σ)

λ;µ (z, s, a).

6.2.1 First set of two-sided inequalities for Φ
(ρ,σ)
λ;µ (z, s, a)

In this section, we recall two theorems which will help us to derive our first set of two-sided inequalities
for the extended Hurwitz-Lerch Zeta function Φ(ρ,σ)

λ;µ (z, s, a).

Our first set of main results is based essentially upon a known integral representation for Φ(ρ,σ)
λ;µ (z, s, a)

due to Srivastava et al. [119] and the second set of results would make use of the Mathieu (a,λ)-series,
defined by (6.4).

First, we recall an integral expression given recently by Srivastava et al. [119].
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Theorem C. (H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena [119]) The following integral
representation holds true:

Φ
(ρ,σ)
λ;µ (z, s, a) =

1

Γ(s)

∫∞
0

ts−1 e−at
pΨ
∗
q

[ (λ1, ρ1), · · · , (λp, ρp)
(µ1, σ1), · · · , (µq, σq)

∣∣∣ ze−t
]

dt , <(a), <(s) > 0; |z| < 1 ,

(6.21)

provided that each member of the assertion (6.21) exists.

We next recall a two-sided inequality for the Fox-Wright pΨ∗q-function.

Theorem D. (T. K. Pogány and H. M. Srivastava [93]) For all (λ,µ,ρ,σ) ∈ pD ′q such that

λj >
1− ρj

2
, µk >

1− σk

2
and λj, µk ∈ [0, 1] , j = 1, · · · , p; k = 1, · · · , q ,

where

pD ′q :=

{
(λ,µ,ρ,σ) :

q∏
j=1

(
1+

σj

µj

)σj
≤

p∏
j=1

(
1+

ρj

λj

)2ρj (
1+

1

λj

)−ρ2j

and
p∏
j=1

√
λj
(
λj + ρj

)ρj− 12 ≤ q∏
j=1

(
µj −

1− σj

2

)σj }
,

the following two-sided inequality holds true:

eΩ
∗·|z| ≤ pΨ

∗
q

[ (λ1, ρ1), · · · , (λp, ρp)
(µ1, σ1), · · · , (µq, σq)

∣∣∣ z] ≤ 1−Ω∗ ·
(
1− e|z|

)
, (6.22)

Ω∗ :=

p∏
j=1

(λj)ρj

q∏
j=1

(µj)σj

< 1; z ∈ R .

Remark 6.6. Condition Ω∗ < 1 is necessary for the existence of the inequality (6.22). �

We are now ready to state and prove our first main result in this section.

Theorem 6.7. (H. M. Srivastava, D. Jankov, T. K. Pogány and R. K. Saxena [117]) Assume that
(λ,µ,ρ,σ) ∈ pD ′q, p, q ∈ N0 and s, a ∈ R+. Then

1

as
+
Ω∗ · |z|
(a+ 1)s

≤ Φ(ρ,σ)
λ;µ (z, s, a) ≤ R , (6.23)

where
R =

1−Ω∗

as
+Ω∗ ·Φ(0,1)

λ;1 (|z|, s, a) ≤ 1

as

(
1−Ω∗ · (1− e|z|)

)
.

Proof. First of all, we prove the left-hand side of the inequality (6.23). Using (6.21) from Theorem C,
(6.22) from Theorem D and the following well-known inequality:

ex ≥ 1+ x ,
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we easily get

Φ
(ρ,σ)
λ;µ (z, s, a) ≥ 1

Γ(s)

∫∞
0

ts−1 e−at exp
(
Ω∗ · |z|e−t

)
dt ≥ 1

Γ(s)

∫∞
0

ts−1 e−at
(
1+Ω∗ · |z|e−t

)
dt

=
1

Γ(s)

(∫∞
0

ts−1 e−at dt+Ω∗ · |z|
∫∞
0

ts−1 e−(a+1)t dt
)

=
1

as
+
Ω∗ · |z|
(a+ 1)s

.

Hence
Φ

(ρ,σ)
λ;µ (z, s, a) ≥ 1

as
+
Ω∗ · |z|
(a+ 1)s

.

Now, it remains to prove the right-hand upper bound (6.23). Indeed, by virtue of the upper bound in
(6.22), we estimate the integrand in (6.21) and deduce that

Φ
(ρ,σ)
λ;µ (z, s, a) ≤ 1

Γ(s)

∫∞
0

ts−1 e−at
(
1−Ω∗ ·

(
1− exp

{
|z|e−t

}))
dt

=
1

Γ(s)

((
1−Ω∗

) ∫∞
0

ts−1 e−at dt+Ω∗
∫∞
0

ts−1e−at exp
{
|z|e−t

}
dt
)

=
1−Ω∗

as
+
Ω∗

Γ(s)

∫∞
0

ts−1e−at exp
(
|z|e−t

)
dt . (6.24)

Expanding exp
(
|z|e−t

)
into its Taylor-Maclaurin series and applying the readily justified interchange of

summation and integration, we conclude that

Φ
(ρ,σ)
λ;µ (z, s, a) ≤ 1−Ω∗

as
+Ω∗

∞∑
n=0

1

n!

|z|n

(a+ n)s
,

where the sum can easily be recognized as follows:

∞∑
n=0

1

n!

|z|n

(a+ n)s
= Φ

(0,1)
λ;1 (|z|, s, a) ,

that is, a special case of the extended Hurwitz-Lerch Zeta function Φ(ρ,σ)
λ;µ (z, s, a) with p = q = 1.

The upper bound in (6.23) contains a generalized Hurwitz-Lerch Zeta function term. However, upon
estimating the integrand in (6.24) by means of the following rather elementary inequality:

e−t ≤ 1 , t ≥ 0 ,

we get the following remarkably simple result:

Φ
(ρ,σ)
λ;µ (z, s, a) ≤ 1−Ω∗

as
+
Ω∗

as
e|z| .

This completes the proof of the Theorem 6.7.

Remark 6.8. In the proof of Theorem 6.7 there are used the elementary inequalities ex ≥ 1 + x and
e−x ≤ 1, where x ≥ 0. Using certain sharper inequalities (see for example the Analytic Inequalities [70]
monograph by Mitrinović) for ex and e−x, it would be possible significantly to improve the bilateral
bound in (6.23). �
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6.2.2 Second set of two-sided bounding inequalities for Φ
(ρ,σ)
λ;µ (z, s, a)

We already mentioned the following integral representation formula, which was reported by Pogány [89,
Theorem 1], but here it is listed in a slightly different labels:

Ms(b,η; r) =
b0

rs
+ s

∫∞
η1

∫ [η−1(x)]

0

b(u) + b ′(u){u}

(r+ x)s+1
dx du (6.25)

where b ∈ C1[0,∞); b(u)
∣∣
u=N0

=: b, η−1(x) stands for the inverse of the function η(x) and the series
Ms(b,η; r) is assumed to be convergent.

Comparing Φ(ρ,σ)
λ;µ (z, s, a) and Ms(b,η; r), we find for all x ∈ R+ that

b(x) =


p∏
j=1

(λj)ρjx

q∏
j=1

(µj)σjx

 zx

Γ(x+ 1)
and η(x) = I(x) ≡ x, (6.26)

where I denotes the identical mapping. By this setting, the integral representation in (6.25) assumes the
following form:

Ms

(
b(x), I(x);a

)
≡ Φ(ρ,σ)

λ;µ (z, s, a) =
1

as
+ s

∫∞
1

∫ [x]

0

b(u) + b ′(u){u}

(a+ x)s+1
dx du . (6.27)

If we substitute from the relation (6.26) in the integrand of (6.27), we get a new double integral expression
formula for the extended Hurwitz-Lerch Zeta function Φ(ρ,σ)

λ;µ (z, s, a), given by Theorem 6.9 below.

Theorem 6.9. (H. M. Srivastava, D. Jankov, T. K. Pogány and R. K. Saxena [117]) Assume that λj ∈ C,
a, µk ∈ C \ Z−

0 , ρj, σk ∈ R+, j = 1, · · · , p; k = 1, · · · , q, min{s,<(a)} > 0 and 0 < z ≤ 1. Then

Φ
(ρ,σ)
λ;µ (z, s, a) =

1

as
+ s


∫∞
1

∫ [x]

0

p∏
j=1

(λj)ρju

q∏
j=1

(µj)σju

zu

Γ(u+ 1)

dx du
(a+ x)s+1

+

∫∞
1

∫ [x]

0

{u}
d

du


p∏
j=1

(λj)ρju

q∏
j=1

(µj)σju

zu

Γ(u+ 1)


dx du

(a+ x)s+1

 . (6.28)

In the remaining part of this chapter, our main apparatus will be the above integral representation. To
apply the inequality 0 ≤ {u} < 1 in evaluating the integral in (6.28), we should know the monotonicity
behavior of the function h(x) given by

h(x) =


q∏
j=1

Γ(µj)

p∏
j=1

Γ(λj)




p∏
j=1

Γ(λj + ρjx)

q∏
j=1

Γ(µj + σjx)

 zx

Γ(x+ 1)
, x ≥ 1 . (6.29)

In the next theorem, again, we need Psi function ψ(z), and the Euler-Mascheroni constant C.
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Theorem 6.10. (H. M. Srivastava, D. Jankov, T. K. Pogány and R. K. Saxena [117]) Consider the
parameters a, s ∈ R+ and let p, q ∈ N0, λj, µk, ρj, σk ∈ R, j = 1, · · · , p; k = 1, · · · , q. Then each of the
following two–sided inequalities holds true:

L < Φ
(ρ,σ)
λ;µ (z, s, a) ≤ R , (6.30)

for µkj + xσkj ≥ λj + xρj > 0; σkj ≥ ρj > 0; ψ(λj + xρj) > 0; x > 0; z ∈ (0, e−C); p ≤ q, where
(k1, · · · , kp) is a permutation of p indices kj ∈ {1, · · · , q} and

R := a−s + s

∫∞
1

∫ [x]

0

p∏
j=1

(λj)ρju

q∏
j=1

(µj)σju

zu

Γ(u+ 1)

dx du
(a+ x)s+1

L := R+ s

∫∞
1

p∏
j=1

(λj)ρj[x]

q∏
j=1

(µj)σj[x]

z[x]

Γ([x] + 1)

dx
(a+ x)s+1

− a−s ;

moreover
R ≤ Φ(ρ,σ)

λ;µ (z, s, a) < L , (6.31)

when λjk + xρjk ≥ µk + xσk > 0; ρjk ≥ σk > 0; ψ(µk + xσk) > 0; x > 0; z > x+ e−C; p ≥ q.

Here (j1, . . . , jq) stands for a q–tiple of indices from {1, . . . , p}. The upper bound in (6.30) and the lower
bound in (6.31) are sharp in the sense that 0 ≤ {u} < 1.

Proof. To prove the assertions (6.30) and (6.31) of Theorem 6.10, we consider the function g(x) given by

g(x) =


p∏
j=1

Γ(λj + xρj)

q∏
j=1

Γ(µj + xσj)

 zx

Γ(x+ 1)
,

so that, obviously, the monotonicity of g(x) implies the monotonicity of the function h(x) defined by
(6.29). Hence

g ′(x) = g(x)

 p∑
j=1

ρjψ(λj + xρj) + ln z−

q∑
j=1

σjψ(µj + xσj) −ψ(x+ 1)

 .
Since g(x) > 0 for all x > 0, the following expression:

f(x) =

p∑
j=1

ρjψ(λj + xρj) + ln z−

q∑
j=1

σjψ(µj + xσj) −ψ(x+ 1)
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controls the sign of g ′(x). As p ≤ q, transforming f(x) into

f(x) =

p∑
j=1

(
ρjψ(λj + xρj) − σkjψ(µkj + xσkj)

)
+
(

ln z−ψ(1+ x)
)

−

q∑
j=1

j6=k1,··· ,kp

σjψ(µj + xσj) ,

and then, using the fact that z ∈ (0, e−C), we find that f(x) < 0, i.e. g ′(x) < 0, x > 0, because the Psi
function ψ(x) is increasing for x > 0, that is,

ψ(x+ 1) > ψ(1) = −C.

From the elementary inequalities 0 ≤ {u} < 1 and g ′(u) < 0, we deduce that

h ′(u) < {u}h ′(u) ≤ 0

and, upon integrating this estimate in
(
0, [x]

)
, we have

h
(
[x]) − h(0) <

∫ [x]

0

{u}h ′(u) du ≤ 0 .

Integrating the left-hand side estimate on the range R+ with respect to the measure (a+ x)−s−1 dx, we
arrive at the assertion (6.30) of Theorem 6.10. Similarly, by the following inequality [27, Corollary 3]

ψ(x+ 1) < ln (x+ e−C) , x > 0 ,

we see for the function h(x) given by (6.29) that h ′(x) > 0, x > 0. The remaining part of the proof of
(6.31) is the same as the proof of the assertion (6.30), so we easily get the inequality (6.31).

6.3 On generalized Hurwitz–Lerch Zeta distributions occuring

in statistical inference

The object of this section is to define certain new incomplete generalized Hurwitz–Lerch Zeta functions
and incomplete generalized Gamma functions. Further, we introduce two new statistical distributions
named as, generalized Hurwitz–Lerch Zeta Beta prime distribution and generalized Hurwitz–Lerch Zeta
Gamma distribution and investigate their statistical functions, such as moments, distribution and sur-
vivor function, characteristic function, the hazard rate function and the mean residue life functions.
Finally, Moment Method parameter estimators are given by means of a statistical sample of size n. The
result obtained provide an elegant extension of the work reported earlier by Garg et al. [31] and others.

Special attention will be given to the special case of extended Hurwitz–Lerch Zeta function, given by
(6.18), which we mentioned earlier in (6.19):

Φ∗µ(z, s, a) := Φ
(1,1,1)
1,µ,1 (z, s, a) =

∞∑
n=1

(µ)n

(n+ a)s
zn

n!
.
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Moreover, the article [119] contains the integral representation

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a) =

1

Γ(s)

∫∞
0

ts−1e−at
2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−t
]
dt, (6.32)

valid for all a, s ∈ C, <(a) > 0, <(s) > 0, when |z| ≤ 1, z 6= 1; and <(s) > 1 for z = 1. Here pΨ∗q[·]
stands for the unified variant of the celebrated Fox–Wright generalized hypergeometric function defined
by (2.18), in Chapter 2.

Finally, we recall the integral expression for function Φ(ρ,σ,κ)
λ,µ,ν (z, s, a), derived by Srivastava et al. [119]:

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a) =

Γ(ν)

Γ(λ)Γ(ν− λ)

∫∞
0

tλ−1

(1+ t)ν
Φ

(σ,κ−ρ)
µ,ν−λ

( ztρ

(1+ t)κ
, s, a

)
dt, (6.33)

where <(ν) > <(λ) > 0, κ ≥ ρ > 0, σ > 0, s ∈ C.

Now, we study generalized incomplete functions and the associated statistical distributions based mainly
on integral expressions (6.32) and (6.33).

6.4 Families of incomplete ϕ and ξ functions

By virtue of integral (6.33), we define the lower incomplete generalized Hurwitz–Lerch Zeta function as

ϕ
(ρ,σ,κ)
λ,µ,ν (z, s, a|x) =

Γ(ν)

Γ(λ)Γ(ν− λ)

∫x
0

tλ−1

(1+ t)ν
Φ

(σ,κ−ρ)
µ,ν−λ

( ztρ

(1+ t)κ
, s, a

)
dt, (6.34)

and the upper (complementary) generalized Hurwitz–Lerch Zeta function in the form

ϕ
(ρ,σ,κ)
λ,µ,ν (z, s, a|x) =

Γ(ν)

Γ(λ)Γ(ν− λ)

∫∞
x

tλ−1

(1+ t)ν
Φ

(σ,κ−ρ)
µ,ν−λ

( ztρ

(1+ t)κ
, s, a

)
dt. (6.35)

In both cases one requires <(ν),<(λ) > 0, κ ≥ ρ > 0; σ > 0, s ∈ C.

From (6.34) and (6.35) readily follows that

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a) = lim

x→∞ϕ(ρ,σ,κ)
λ,µ,ν (z, s, a|x) = lim

x→0+ϕ(ρ,σ,κ)
λ,µ,ν (z, s, a|x) ,

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a) = ϕ

(ρ,σ,κ)
λ,µ,ν (z, s, a|x) +ϕ

(ρ,σ,κ)
λ,µ,ν (z, s, a|x) , x ∈ R+.

In view of the integral expression (6.32), the lower incomplete generalized Gamma function and the upper
(complementary) incomplete generalized Gamma function are defined respectively by

ξ
(ρ,σ,κ)
λ,µ,ν (z, s, a, b|x) =

bs

Γ(s)

∫x
0

ts−1e−at
2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bt
]
dt (6.36)

and

ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) =
bs

Γ(s)

∫∞
x

ts−1e−at
2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bt
]
dt, (6.37)
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where <(a),<(s) > 0, when |z| ≤ 1 (z 6= 1) and <(s) > 1, when z = 1, provided that each side exists.
By virtue of (6.36) and (6.37) we easily conclude the properties:

Φ
(ρ,σ,ρ)
λ,µ,ν (z, s, a/b) = lim

x→∞ ξ(ρ,σ,κ)
λ,µ,ν (z, s, a, b|x) = lim

x→0+ ξ(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) ,

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b) = ξ

(ρ,σ,κ)
λ,µ,ν (z, s, a, b|x) + ξ

(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x) , x ∈ R+.

6.5 Generalized Hurwitz–Lerch Zeta Beta prime

distribution

Special functions and integral transforms are useful in the development of the theory of probability density
functions (PDF). In this connection, one can refer to the books e.g. by Mathai and Saxena [63, 64] or by
Johnson and Kotz [44, 45]. Hurwitz–Lerch Zeta distributions are studied by many mathematicians such as
Dash, Garg, Gupta, Kalla, Saxena, Srivastava etc. (see e.g. [30, 31, 37, 38, 103, 104, 105, 106, 120]). Due
to usefulness and popularity of Hurwitz–Lerch Zeta distribution in reliability theory, statistical inference
etc. we are motivated to define a generalized Hurwitz–Lerch Zeta distribution and to investigate its
important properties.

Let the random variable X be defined on some fixed standard probability space (Ω,F,P). The r.v. X
such that possesses PDF

f(x) =


Γ(ν) xλ−1

Γ(λ)Γ(ν− λ)(1+ x)ν

Φ
(σ,κ−ρ)
µ,ν−λ

( zxρ

(1+ x)κ
, s, a

)
Φ

(ρ,σ,κ)
λ,µ,ν (z, s, a)

, if x > 0

0, if x ≤ 0

, (6.38)

we call generalized Hurwitz–Lerch Zeta Beta prime and write X ∼ HLZB ′. Here µ, λ are shape parameters,
and z stands for the scale parameter which satisfy <(ν) > <(λ) > 0, s ∈ C, κ ≥ ρ > 0, σ > 0.

The behavior of the PDF f(x) at x = 0 depends on λ in the manner that f(0) = 0 for λ > 1, while
limx→0+ f(x) =∞ for all 0 < λ < 1.

Now, let us mention some interesting special cases of PDF (6.38).

• For σ = ρ = κ = 1 we get the following Hurwitz–Lerch Zeta Beta prime distribution discussed by
Garg et al. [31]:

f1(x) =


Γ(ν)

Γ(λ)Γ(ν− λ)Φλ,µ,ν(z, s, a)

xλ−1

(1+ x)ν
Φ∗µ

( zx

1+ x
, s, a

)
, if x > 0

0, elsewhere
,

where a /∈ Z−
0 , <(ν) > <(λ) > 0, x ∈ R, s ∈ C when |z| < 1 and <(s − µ) > 0, when |z| = 1. Here

Φ∗µ(·, s, a) stands for the Goyal–Laddha type generalized Hurwitz–Lerch Zeta function described
in (6.19).
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• If we set σ = ρ = κ = λ = 1 it gives a new probability distribution function, defined by

f2(x) =


ν− 1

(1+ x)νΦ1,µ,ν(z, s, a)
Φ∗µ

( zx

1+ x
, s, a

)
, if x > 0

0, if x ≤ 0
,

where a /∈ Z−
0 , <(ν) > 1, x ∈ R, s ∈ C when |z| < 1 and <(s− µ) > 0, when |z| = 1.

• When σ = ρ = κ = 1 and ν = µ, from (6.38) it follows

f3(x) =


Γ(µ)

Γ(λ)Γ(µ− λ)Φ∗λ(z, s, a)

xλ−1

(1+ x)µ
Φ∗µ

( zx

1+ x
, s, a

)
, if x > 0

0, if x ≤ 0
,

with a /∈ Z−
0 , <(µ) > <(λ) > 0, x ∈ R, s inC when |z| < 1 and <(s− µ) > 0, when |z| = 1.

• For σ = ρ = κ = 1 and µ = 0, we obtain the Beta prime distribution (or the Beta distribution of
the second kind.

• For Fischer’s F–distribution, which is a Beta prime distribution, we set σ = ρ = κ = 1 and replace
x = mx/n, λ = m/2, ν = (m+ n)/2, where m and n are positive integers.

6.5.1 Statistical functions for the HLZB ′ distribution

In this section we introduce some classical statistical functions for the HLZB ′ distributed random variable
having the PDF given with (6.38). These characteristics are moments of positive, fractional order mr, r ∈
R, being the Mellin transform of order r + 1 of the PDF; the generating function GX(t) which equals
to the Laplace transform and the characteristic function (CHF) φX(t) which coincides with the Fourier
transform of the PDF (6.38).

We point out that all three highly important characteristics of the probability distributions can be
uniquely expressed via the operator of the mathematical expectation E. However, it is well–known that
for any Borel function ψ there holds

Eψ(X) =

∫
R
ψ(x)f(x) dx. (6.39)

To obtain explicitely mr, GX(t), φX(t) we also need in the sequel the extended Hurwitz–Lerch Zeta
function, already introduced in (6.20).

Theorem 6.11. (R. K. Saxena, T. K. Pogány, R. Saxena and D. Jankov [107]) Let X ∼ HLZB ′ be a r.v.
defined on a standard probability space (Ω,F,P) and let r ∈ R+. Then the rth fractional order moment
of X reads as follows

mr =
(λ)r sinπ(ν− λ)

(1− ν+ λ)r sinπ(ν− λ− r)

Φ
(σ,ρ,κ−ρ;κ,κ−ρ)

µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

. (6.40)
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Proof. The fractional moment mr of the r.v. X ∼ HLZB ′ is given by

mr = EXr =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∫∞
0

xλ+r−1

(1+ x)ν
Φ

(σ,κ−ρ)
µ,ν−λ

( zxρ

(1+ x)κ
, s, a

)
dx , r ∈ R+ ,

where A is the related normalizing constant.

Expressing the Hurwitz–Lerch Zeta function in initial power series form, and interchanging the order of
summation and integration, we find that:

mr =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∞∑
n=0

(µ)σn

(ν− λ)(κ−ρ)n

zn

(n+ a)s n!

∫∞
0

xλ+r+ρn−1

(1+ x)ν+κn
dx

=
AΓ(λ+ r)Γ(ν− λ− r)

Γ(λ)Γ(ν− λ)

∞∑
n=0

(µ)σn(λ+ r)ρn

(ν)κn
·
(ν− λ− r)(κ−ρ)n

(ν− λ)(κ−ρ)n

zn

(n+ a)s n!
.

By the Euler’s reflection formula we get

mr =
A(λ)r Γ(1− ν+ λ) sinπ(ν− λ)

Γ(1− ν+ λ+ r) sinπ(ν− λ− r)

∞∑
n=0

(µ)σn(λ+ r)ρn(ν− λ− r)(κ−ρ)n z
n

(ν)κn(ν− λ)(κ−ρ)n (n+ a)s n!

=
A(λ)r sinπ(ν− λ)

(1− ν+ λ)r sinπ(ν− λ− r)

∞∑
n=0

(µ)σn(λ+ r)ρn(ν− λ− r)(κ−ρ)n z
n

(ν)κn(ν− λ)(κ−ρ)n(n+ a)s n!
,

which is same as (6.40).

We point out that for the integer r ∈ N, the moment (6.40) it reduces to

mr =
(−1)r(λ)r

(1− ν+ λ)r

Φ
(σ,ρ,κ−ρ;κ,κ−ρ)

µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

. (6.41)

Theorem 6.12. (R. K. Saxena, T. K. Pogány, R. Saxena and D. Jankov [107]) The generating function
GX(t) and the CHF φX(t) for the r.v. X ∼ HLZB ′, for all t ∈ R, are represented in the form

GX(t) = E e−tX =
1

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

∞∑
r=0

(λ)r

(1+ λ− ν)r

tr

r!
Φ

(σ,ρ,κ−ρ;κ,κ−ρ)
µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a),

φX(t) = E eitX =
1

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

∞∑
r=0

(λ)r

(1+ λ− ν)r

(−it)r

r!
Φ

(σ,ρ,κ−ρ;κ,κ−ρ)
µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a) .

Proof. Setting ψ(X) = e−tX in (6.39) respectively, then expanding the Laplace kernel into Maclaurin
series, by legitimate interchange the order of summation and integration we obtain the generating function
GX(t) in terms of (6.41), using also the relation (2.5). Because φX(t) = GX(−it), t ∈ R, the proof is
completed.

The second set of important statistical functions concers the reliability applications of the newly intro-
duced generalized Hurwitz–Lech Zeta Beta prime distribution. The functions associated with r.v. X are
the cumulative distribution function (CDF) F, the survivor function S = 1− F, the hazard rate function
h = f/(1 − F), and the mean residual life function K(x) = E[X − x|X ≥ x]. Their explicit formulæ are
given in terms of lower and upper incomplete (complementary) ϕ–functions.



Chapter 6. Hurwitz–Lerch Zeta function 70

Theorem 6.13. (R. K. Saxena, T. K. Pogány, R. Saxena and D. Jankov [107]) Let r.v. X ∼ HLZB ′.
Then we have:

h(x) =
f(x)

S(x)
=

Γ(ν)

Γ(λ)Γ(ν− λ)

xλ−1

(1+ x)ν

Φ
(σ,κ−ρ)
µ,ν−λ

( zxρ

(1+ x)κ
, s, a

)
ϕ

(ρ,σ,κ)
λ,µ,ν (z, s, a|x)

, (6.42)

K(x) =
Γ(ν)

Γ(λ)Γ(ν− λ)ϕ
(ρ,σ,κ)
λ,µ,ν (z, s, a|x)

∞∑
n=0

(µ))σn

(ν− λ)(κ−ρ)n

zn

(n+ a)s n!

× B(1+x)−1

(
ν− λ− 1+ (κ− ρ)n, λ+ 1+ ρn

)
− x, (6.43)

where
Bz(a, b) =

∫z
0

ta−1(1− t)b−1 dt , min {<(a), <(b)} > 0, |z| < 1

represents the incomplete Beta–function.

Proof. The CDF and the survivor functions of the r.v. X are

F(x) =
ϕ

(ρ,σ,κ)
λ,µ,ν (z, s, a|x)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

, S(x) =
ϕ

(ρ,σ,κ)
λ,µ,ν (z, s, a|x)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

, x > 0 ,

and vanish elsewhere. Therefore, being h(x) = f(x)/S(x), (6.42) is proved.

It is well–known that for the mean residual life function there holds [36]

K(x) =
1

S(x)

∫∞
x

tf(t)dt− x .

The integral will be

J =

∫∞
x

tf(t)dt =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∞∑
n=0

(µ)σn (n+ a)−s zn

(ν− λ)(κ−ρ)n n!

∫∞
x

tλ+ρn

(1+ t)ν+κn
dt ,

where the innermost t–integral reduces to the incomplete Beta function in the following way:

∫∞
x

tp−1

(1+ t)q
dt =

∫ (1+x)−1

0

tq−p−1(1− t)p−1 dt = B(1+x)−1(q− p, p) .

Therefore we conclude

J =
AΓ(ν)

Γ(λ)Γ(ν− λ)

∞∑
n=0

(µ)σn (n+ a)−s zn

(ν− λ)(κ−ρ)n n!
B(1+x)−1

(
ν− λ− 1+ (κ− ρ)n, λ+ 1+ ρn

)
.

After some simplification it leads to the stated formula (6.43).
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6.6 Generalized Hurwitz–Lerch Zeta Gamma

distribution

Gamma–type distributions, associated with certain special functions of science and engineering, are
studied by several researchers, such as Stacy [122]. In this section a new probability density function is
introduced, which extends both the well–known Gamma distribution [106, 132] and Planck distribution
[45].

Consider the r.v. X defined on a standard probability space (Ω,F,P) , defined by the PDF

f(x) =


bsxs−1e−ax

Γ(s)

2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bx
]

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

, if x > 0

0, if x ≤ 0

, (6.44)

where a, b are scale parameters and s is shape parameter. Further <(a), <(s) > 0 when |z| ≤ 1 (z 6= 1)

and <(s) > 1 when z = 1. Such distribution we call by convention generalized Hurwitz–Lerch Zeta
Gamma distribution and write X ∼ HLZG. Notice that behavior of f(x) near to the origin depends on s
in the manner that f(0) = 0 for s > 1, and for s = 1 we have

f(0) =

b 2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ z ]
Φ

(ρ,σ,κ)
λ,µ,ν (z, 1, a/b)

,

and limx→0+ f(x) =∞ when 0 < s < 1.

Now, we list some important special cases of the HLZG distribution.

• For σ = ρ = κ = 1 we obtain the following PDF discussed by Garg et al. [31]:

f1(x) =
bsxs−1e−ax

Γ(s)

2F1

[ λ, µ
ν

∣∣∣ ze−bx
]

Φλ,µ,ν(z, s, a/b)
,

where <(a), <(b), <(s) > 0 and |z| < 1 or |z| = 1 with <(ν− λ− µ) > 0.

• If we set σ = ρ = κ = 1, b = a, λ = 0, then (6.44) reduces to the Gamma distribution [45, p. 32]
and

• for σ = ρ = κ = 1, µ = ν, λ = 1 it reduces to the generalized Planck distribution defined by
Nadarajah and Kotz [71], which is a generalization of the Planck distribution [45, p. 273].
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6.6.1 Statistical functions for the HLZG distribution

In this section we will derive the statistical functions for the r.v. X ∼ HLZG distribution associated with
PDF (6.44). For the moments mr of fractional order r ∈ R+ we derive by definition

mr(s) =

∫∞
0

xrf(x)dx =
(s)r

br

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

. (6.45)

Next we present the Laplace and the Fourier transforms of the probability density function (6.44), that
is the generating function GY(t) and the related CHF φY(t):

GY(t) = E e−tY =
Φ

(ρ,σ,κ)
λ,µ,ν (z, s, (a+ t)/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

,

φY(t) = GY(−it) = E eitY =
Φ

(ρ,σ,κ)
λ,µ,ν (z, s, (a− it)/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

.

The second set of the statistical functions include the hazard function h and the mean residual life
function K.

Theorem 6.14. (R. K. Saxena, T. K. Pogány, R. Saxena and D. Jankov [107]) Let X ∼ HLZG. Then
we have:

h(x) =
bsxs−1e−ax

Γ(s)

2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ ze−bx
]

ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x)

K(x) =
bs

Γ(s)ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x)

∞∑
n=0

(λ)ρn(µ)σn

(ν)κn

Γ(s+ 1, (a+ bn)x)

(a+ bn)s+1
zn

n!
− x . (6.46)

Here
Γ(p, z) =

∫∞
z

tp−1e−t dt , <(p) > 0 ,

stands for the upper incomplete Gamma function.

Proof. From the hazard function formula a simple calculation gives:

K(x) =
bs

Γ(s)ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x)

∫∞
x

tse−at
2Ψ
∗
1

[ (λ, ρ), (µ, σ)

(ν, κ)

∣∣∣ze−bt
]

dt− x

=
bs

Γ(s)ξ
(ρ,σ,κ)

λ,µ,ν (z, s, a, b|x)

∞∑
n=0

(λ)ρn(µ)σn

(ν)κn

zn

n!

∫∞
x

tse−(a+bn)t dt− x .

Further simplification leads to the asserted formula (6.46).



Chapter 6. Hurwitz–Lerch Zeta function 73

6.7 Statistical parameter estimation in HLZB ′

and HLZG distribution models

The statistical parameter estimation becomes one of the main tools in random model identification pro-
cedures. In studied HLZB ′ and HLZG distributions the PDFs (6.38) and (6.44) are built by higher tran-
scendental functions such as generalized Hurwitz–Lerch Zeta function Φ(ρ,σ,κ)

λ,µ,ν (z, s, a) and Fox–Wright
generalized hypergeometric function 2Ψ

∗
1[z]. The power series definitions of these functions does not

enable the successful implementation of the popular and efficient Maximum Likelihood (ML) parameter
estimation, only the numerical system solving can reach any result for HLZB ′, while ML cannot be used
for HLZG distribution case, being the extrema of the likelihood function out of the parameter space.

Therefore, we consider the Moment Method estimators, such that are weakly consistent (by the Khinchin’s
Law of Large Numbers [102]), also strongly consistent (by the Kolmogorov LLN [25]) and asymptotically
unbiased.

6.7.1 Parameter estimation in HLZB ′ model

Assume that the considered statistical population possesses HLZB ′ distribution, that is the r.v. X ∼ f(x),
(6.38) generates n independent, identically distributed replicæ Ξ =

(
Xj
)
j=1,n

which forms a statistical
sample of the size n. We are now interested in estimating the 9-dimensional parameter

θ9 = (a, σ, κ, ρ, λ, µ, ν, z, s)

or some of its coordinates by means of the sample Ξ.

First we consider the PDF (6.38) for small z→ 0. For such values we get asymptotic

f(x) ∼
Γ(ν) xλ−1

Γ(λ)Γ(ν− λ)(1+ x)ν
, x > 0,

which is the familiar Beta distribution of the second kind (or Beta prime) B ′(λ, ν). The moment method
estimators for the remaining parameters λ > 0, ν > 2 read:

λ̃ =
Xn
(
X2n + Xn

)
S
2

n

, ν̃ =
X2n + Xn

S
2

n

(
Xn + 1

)
+ 1 ,

where

Xn =
1

n

n∑
j=1

Xj, S
2

n =
1

n

n∑
j=1

(
Xj − Xn

)2
expressing the sample mean and the sample variance respectively. Let us mention that for ν < 2, the
variance of a r.v. X ∼ B ′(λ, ν) does not exists, so for these range of parameters MM is senseless.
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The case of full range parameter estimation is highly complicated. The moment method estimator can
be reached by virtue of the positive integer order moments formula (6.41) substituting

Xrn =
1

n

n∑
j=1

Xrj 7→ mr,

where Xrn is the rth sample moment. Thus, numerical solution of the system

(−1)r(λ)r

(1− ν+ λ)r

Φ
(σ,ρ,κ−ρ;κ,κ−ρ)

µ,λ+r,ν−λ−r;ν,ν−λ(z, s, a)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a)

= Xrn , r = 1, 9

which results in the vectorial moment estimator θ̃9 = (ã, σ̃, κ̃, ρ̃, λ̃, µ̃, ν̃, z̃, s̃).

6.7.2 Parameter estimation in HLZG distribution

To achieve Gamma distribution’s PDF from the density function (6.44) of HLZG in a way different then
the second special case derived in Section 6.6, it is enough to consider the PDF (6.44) for a = b and
small z→ 0. Indeed, we have

lim
z→0 f(x) =


bsxs−1e−bx

Γ(s)
, if x > 0

0, if x ≤ 0
.

It is well known that the moment method estimators for parameters b, s are

b̃ =
Xn

S
2

n

, s̃ =

(
Xn
)2

S
2

n

.

The general case includes the vectorial parameter

θ10 = (a, b, s, λ, ρ, µ, σ, ν, κ, z) .

First we show a kind of recurrence relation for the fractional order moments between distant neighbors.

Theorem 6.15. (R. K. Saxena, T. K. Pogány, R. Saxena and D. Jankov [107]) Let 0 ≤ t ≤ r be
nonnegative real numbers, and mr denotes the fractional positive rth order moment of a r.v. X ∼ HLZG.
Then it holds true

mr(s) = mr−t(s+ t) ·mt(s) , s > 0, 0 ≤ t ≤ r . (6.47)

Proof. It is not difficult to prove

mr(s) =
(s)r

br

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

=
Γ(s+ r)

br−t Γ(s+ t)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ t, a/b)

Γ(s+ t)

bt Γ(s)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ t, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

,

which is equivalent to the assertion of the Theorem 6.15.
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Remark 6.16. Taking the integer order moments (6.45), that is mr, r ∈ N0, the recurrence relation
(6.47) becomes a contiguous relation for distant neighbors:

m`(s) = m`−k(s+ k) ·mk(s) =
(s+ k)`−k

b`−k

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ `, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ k, a/b)

mk(s) (6.48)

for all 0 ≤ k ≤ `, k, ` ∈ N0. �

Choosing a system of 10 suitable different equations like (6.47) in which mr is substituted with Xrn 7→ mr,
we get

(s+ t)r−t

br−t

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ r, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ t, a/b)

=
Xrn

Xtn
. (6.49)

However, the at least complicated case of (6.47) occurs at the contiguous (6.48) with k = 0, ` = 1, 10,
that is, by virtue of (6.49) we deduce the system in unknown θ10:

(s)`Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ `, a/b) = b`Φ

(ρ,σ,κ)
λ,µ,ν (z, s, a/b)X`n , ` = 1, 10 . (6.50)

The numerical solution of system (6.50) with respect to unknown parameter vector θ10 we call moment
method estimator θ̃10.

Remark 6.17. From (6.47) we can easily get the following recursive relation

mr(s) = mr−1(s+ 1) ·m1(s) = mr−2(s+ 2) ·m1(s+ 1) ·m1(s) = · · · = m{r}(s+ [r]) ·
[r]∏
j=0

m1(s+ j) .

From the previous relation, for r ∈ N0, it obviously holds

mr(s) =

r∏
j=0

m1(s+ j) . (6.51)

Now, from (6.45) and (6.51), we can derive a new formula for the r–th moment of HLZG distribution:

mr(s) =

r∏
j=0

s+ j

b

Φ
(ρ,σ,κ)
λ,µ,ν (z, s+ j+ 1, a/b)

Φ
(ρ,σ,κ)
λ,µ,ν (z, s, a/b)

, r ∈ N0 .

�



Conclusion

In this paper, the main theme of our research were integral representations of functional series of hyper-
geometric and Bessel types, and the two-sided inequalities of the mentioned hypergeometric functions.

The research consists of several separate parts, which are connected into a harmonious whole, by the
obtained results.

Results, which are derived in the thesis, give a large contribution to the theory of special functions, which
has been developed since the 18th century.
We give special attention to the Bessel functions of the first kind. Namely, It is well known that there
are three types of functional series with members containing Bessel functions of the first kind. Those are
Neumann, Schlömilch and Kapteyn series.
In the thesis, there are results which contain new integral representations of the above mentioned series
and also of the modified Neumann series of the first and second kind, which we define too.
Contribution of the thesis in the field of functional series of Bessel types is reflected also in the determi-
nation of coefficients of Neumann series of Bessel functions of the first kind, which had been the open
problem since 2009, posed by Pogány [92].

To the best of our knowledge, until now there are not known inequalities for Hurwitz-Lerch Zeta function.
So, in the important contributions of the thesis, we can also state the two-sided inequalities for the
extended general Hurwitz-Lerch Zeta function and the extended Hurwitz-Lerch Zeta function, derived
from their integral representations.

In addition to the above results, new ideas and results appear and they provide a space for further
development of the theory of functional series.

The next step would be to unify the theory of summing of functional series, whose members can be
expressed by the nonhomogeneous differential equations, so that the nonhomogeneous part becomes
associated with the initial functional series.
If we have integral representation of the initial series, we could derive new results at the similar way
as we did it e.g. in the Section 3.2.1, which contains some results connected with the Neumann series,
and where we get the function Pν(x), which defines the so–called Neumann series of Bessel functions
associated to the Neumann series Nν(z).
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Zaključak

U ovom radu, glavna tema našeg istraživanja bile su integralne reprezentacije funkcionalnih redova hiper-
geometrijskog i Besselovog tipa, te dvostrane nejednakosti pomenutih hipergeometrijskih funkcija.

Istraživanje se sastoji od nekoliko zasebnih dijelova, koje dobiveni rezultati povezuju u skladnu cjelinu.

Rezultati navedeni u tezi, u velikoj mjeri pridonose razvoju teorije specijalnih funkcija, čije početke
nalazimo još u 18. stoljeću.
Posebnu pažnju pridajemo Besselovim funkcijama prve vrste. Naime, poznato je da postoje tri vrste
funkcionalnih redova čiji članovi sadrže Besselove funkcije prve vrste. To su Neumannovi, Schlömilchovi,
te Kapteynovi redovi.
U tezi navodimo rezultate koji sadrže nove integralne reprezentacije pomenutih redova, kao i modificiranih
Neumannovih redova prve i druge vrste, koje takod̄er definiramo.
Doprinos teze u području funkcionalnih redova Besselovog tipa ogleda se i u odred̄ivanju koeficijenata
Neumannovog reda Besselovih funkcija prve vrste, što je bio otvoren problem iz 2009. godine, postavljen
od strane Poganja [92].

Napominjemo da do sada nisu bile poznate nejednakosti za Hurwitz–Lerch Zeta fukciju. Dakle, u
važnije doprinose teze možemo uvrstiti i dvostrane nejednakosti poopćene Hurwitz–Lerch Zeta funkcije,
te proširene Hurwitz–Lerch Zeta funkcije, koje dobivamo korǐstenjem njihovih integralnih reprezentacija.

Pored navedenih rezultata javljaju se nove ideje i neriješeni problemi koji daju prostora za daljnji razvoj
problematike funkcionalnih redova.

Sljedeći korak u istraživanju može biti nalaženje generalne metode sumiranja funkcionalnih redova čiji
članovi zadovoljavaju nehomogenu diferencijalnu jednadžbu, tako da nehomogeni dio postane pridružen
polaznom funkcionalnom redu.
Štovǐse, ako znamo integralnu reprezentaciju polaznog funkcionalnog reda, tada možemo izvesti nove
rezultate na sličan način kao što smo to napravili npr. u poglavlju 3.2.1, koje sadrži rezultate vezane uz
Neumannove redove, te je dobivena i funkcija Pν(x), što je Neumannov red Besselovih funkcija povezan
s Nν(z).



Bibliography

[1] M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Applied Mathematics Series 55, National Bureau of Standards,
Washington, D. C., 1964; Reprinted by Dover Publications, New York, 1965.

[2] H. Alzer, Sharp inequalities for the beta function, Indag. Math. 12(1) (2001), 15–21.
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[28] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Func-
tions, Vol. 1, McGraw–Hill, New York, Toronto & London, 1955.

[29] L. N. G. Filon, On the expansion of polynomials in series of functions, Proc. Lond. Math. Soc. (2)
IV (1906), 396–430.

[30] M. Garg, K. Jain, S. L. Kalla, A further study of generalized Hurwitz–Lerch Zeta function,
Algebras Groups Geom. 25(3) (2008), 311–319.

[31] M. Garg, K. Jain, S. L. Kalla, On generalized Hurwitz–Lerch Zeta function, Appl. Appl. Math.
4(1) (2009), 26–39.
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[43] D. Jankov, T. K. Pogány, E. Süli, On the coefficients of Neumann series of Bessel functions,
J. Math. Anal. Appl. 380(2) (2011), 628-631.

[44] N. L. Johnson, S. Kotz, Distribution in Statistics: Continuous Univariate Distributions, Vol. 1,
John Wiley and Sons, New York, 1970.

[45] N. L. Johnson, S. Kotz, Distribution in Statistics: Continuous Univariate Distributions, Vol. 2,
John Wiley and Sons, New York, 1970.

[46] W. Kapteyn, On an expansion of an arbitrary function in a series of Bessel functions, Messenger
of Math. 35 (1906), 122-125.

[47] W. Kapteyn, Recherches sur les functions de Fourier–Bessel, Ann. Sci. de l’École Norm. Sup. 10
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8 (1961), 323332.

[127] P.–Y. Wang, Solutions of Some Certain Classes of Differential Equations by Means of Fractional
Calculus, PhD dissertation, Department of Applied Mathematics, Chung Yuan Christian University
Chung-Li, Taiwan, 2006.



Bibliography 85

[128] P.–Y. Wang, S.–D. Lin, H. M. Srivastava, Remarks on a simple fractional-calculus approach
to the solutions of the Bessel differential equation of general order and some of its applications,
Comput. Math. Appl. 51(1) (2006), 105–114.

[129] P.–Y. Wang, S.–D. Lin, S.–T. Tu, A survey of fractional-calculus approaches to the solutions
of the Bessel differential equation of general order, Appl. Math. Comput. 187(1) (2007), 544–555.

[130] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Lon-
don, 1992.

[131] J. E. Wilkins, Jr., Neumann series of Bessel functions, Trans. Amer. Math. Soc. 64 (1948),
359–385.

[132] C.–E. Yen, M.–L. Lin, K. Nishimoto, An integral form for a generalized Zeta function, J.
Fract. Calc. 23 (2002), 99–102.



Curriculum Vitae

I was born on 5 January 1985, in Vukovar. Elementary school I attended in Borovo and secondary
school in Vukovar. In 2003 I enroled the graduate study in Mathematics and Computer Science at the
Department of Mathematics, University of Osijek, where I graduated in September 2007. Work on my
diploma thesis ”Method of moments” was supervised by M. Benšić.
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• Á. Baricz, D. Jankov, T. K. Pogány, Integral representation of first kind Kapteyn series, J.
Math. Phys. 52(4) (2011), Art. 043518, pp. 7.
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I also gave a lecture on the following seminars:

• Seminar on Optimization and Applications, Department of Mathematics, University of Osijek,
Osijek.

• Numerical Mathematics and Scientific Computing Seminar, Department of Mathematics, Univer-
sity of Zagreb, Zagreb.

• Seminar on Inequalities and Applications, Faculty of Electrical Engineering and Computing, Za-
greb.

• Seminar on Topology, Department of Mathematics, University of Zagreb, Zagreb.
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Od 1. studenog, 2007., zaposlena sam na Odjelu za matematiku, Sveučilǐsta J. J. Strossmayera u Osijeku,
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Summary

This thesis presents some new results on integral expressions for series of functions of hypergeometric
and Bessel types. Also there are derived two–sided inequalities of some hypergeometric functions, which
are related with their integral representations.

In the first part of the thesis are defined some special functions, mathematical methods, and results
which we use in prooving our own. Some of them are Gamma function, Gauss hypergeometric function

2F1 and generalized hypergeometric function pFq. There are also Fox-Wright generalized hypergeometric
function pΨq and the Struve function Hν(z).
Bessel differential equation is also described, and that is one of the crucial mathematical tools that we
use.
Mathieu (a,λ)– and Dirichlet series are defined too, because they are useful for deriving most of integral
representations. In that purpose, we also use condensed form of Euler–Maclaurin summation formula
and fractional analysis, which are described in the introduction.

In the middle part of the thesis, i.e. in Chapter 3, 4 and 5 we work on integral representations of
functional series with members containing Bessel functions of the first kind, which are divided into three
types: Neumann series, which are discussed in Chapter 3, Kapteyn series, which are described in Chapter
4, and Schlömilch series, which are observed in Chapter 5.

In the last chapter of this thesis, we obtain a functional series of hypergeometric types. There, we also
derive an integral representations of hypergeometric functions, such as extended general Hurwitz–Lerch
Zeta function and extended Hurwitz–Lerch Zeta function, and also the two-sided inequalities for the
mentioned functions.
At the end of this chapter, new incomplete generalized Hurwitz–Lerch Zeta functions and incomplete
generalized Gamma functions are defined, and we also investigate their important properties.
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Sažetak

U ovoj disertaciji dani su rezultati vezani uz predstavljanje funkcionalnih redova hipergeometrijskog i
Besselovog tipa integralom. Takod̄er su izvedene i dvostrane nejednakosti pojedinih hipergeometrijskih
funkcija, koje su usko vezane s integralnim reprezentacijama istih.

U prvom su dijelu rada najprije definirane specijalne funkcije, matematiki alati, te rezultati koje ko-
ristimo pri dokazivanju vlastitih. Neke od njih su Gama funkcija, Gaussova hipergeometrijska funkcija

2F1, te njezina generalizacija pFq, kao i Fox–Wrightova generalizirana hipergeometrijska funkcija pΨq,
te Struveova funkcija Hν(z).
Opisana je i Besselova diferencijalna jednadžba, koja nam je jedan od glavnih matematičkih alata.
Definirani su i Mathieuovi (a,λ)–, te Dirichletovi redovi, koje koristimo prilikom izvod̄enja većine inte-
gralnih reprezentacija. U tu svrhu koristimo i kondenzirani oblik Euler–Maclaurinove sumacijske formule,
te frakcionalnu analizu čiji opis takod̄er navodimo u uvodnom dijelu.

U sredǐsnjem dijelu rada, tj. u poglavljima 3, 4 i 5 bavimo se integralnim reprezentacijama funkcionalnih
redova Besselovog tipa od kojih postoje tri tipa: Neumannovi redovi, koje promatramo u poglavlju
3, Kapteynovi redovi, koji su opisani u poglavlju 4, te na kraju Schlömilchovi redovi, čije integralne
reprezentacije izvodimo u poglavlju 5.

U šestom, ujedno i posljednjem poglavlju, promatramo funkcionalne redove hipergeometrijskog tipa.
Izvode se integralne reprezentacije hipergeometrijskih funkcija kao što su poopćena Hurwitz-Lerch Zeta
i proširena Hurwitz-Lerch Zeta funkcija, te dvostrane nejednakosti navedenih funkcija.
Na kraju ovog poglavlja bavimo se poopćenom Hurwitz-Lerch Zeta distribucijom, te definiramo nove
nepotpune, generalizirane Hurwitz–Lerch Zeta funkcije i nepotpune generalizirane Gamma funkcije, za
koje takod̄er ispitujemo i osnovna svojstva.
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