Positive solutions for the system of higher order singular nonlinear boundary value problems
Abstract
In this paper, by using Krasnosel'skii fixed point theorem and under suitable conditions, we present the existence of single and multiple positive solutions to the following systems
$$
\begin{aligned}
(-1)^mu^{(2m)}&=\lambda f(t, u(t), v(t))=0,~~~~ t\in[a, b],\\
(-1)^nv^{(2n)}&=\mu g(t, u(t), v(t))=0,~~~~ t\in[a, b],\\
u^{(2i)}(a)&=u^{(2i)}(b)=0,~~~~0\leq i\leq m-1,\\
v^{(2j)}(a)&=v^{(2j)}(b)=0,~~~~0\leq j\leq n-1,
\end{aligned}
$$
where $\lambda, \mu>0, m,n\in \N$. We derive two explicit eigenvalue intervals of $\lambda$ and $\mu$ for the existence of at least one
positive solution and the existence of at least two positive solutions for the above higher order two-point boundary value problem.
$$
\begin{aligned}
(-1)^mu^{(2m)}&=\lambda f(t, u(t), v(t))=0,~~~~ t\in[a, b],\\
(-1)^nv^{(2n)}&=\mu g(t, u(t), v(t))=0,~~~~ t\in[a, b],\\
u^{(2i)}(a)&=u^{(2i)}(b)=0,~~~~0\leq i\leq m-1,\\
v^{(2j)}(a)&=v^{(2j)}(b)=0,~~~~0\leq j\leq n-1,
\end{aligned}
$$
where $\lambda, \mu>0, m,n\in \N$. We derive two explicit eigenvalue intervals of $\lambda$ and $\mu$ for the existence of at least one
positive solution and the existence of at least two positive solutions for the above higher order two-point boundary value problem.
Full Text:
PDFISSN: 1331-0623 (Print), 1848-8013 (Online)