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The Hausdorff distance between some sets of points
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Abstract. The Hausdorff distance can be used in various areas, where the problems of
shape matching and comparison appear. We look at the Hausdorff distance between two
hyperspheres in R

n. With respect to different geometric objects, the Hausdorff distance
between a segment and a hypersphere in R

n is given, too. Using the Mahalanobis distance,
a modified Hausdorff distance between a segment and an ellipse in the plane, and generally
between a segment and a hyper-ellipsoid in R

n is adopted. Finally, the modified Hausdorff
distance between ellipses is obtained.
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1. Introduction

The Hausdorff distance (i.e., Pompeiu-Hausdorff distance, see [4, 6]) between some
sets of points can be used in problems referring to image comparison, contour fitting,
pattern recognition, computer vision and many various fields, where the problems of
shape matching and comparison appear ([1, 3, 5]). We look at some simple curves
in the plane, such as segments, circles, ellipses, and the question on corresponding
Hausdorff distances between them. Some of these cases are generalized in the space
R

n, n ≥ 3. By means of Mahalanobis distances, we consider the modified Hausdorff
distance between ellipses in the plane.

The Hausdorff distance between two (closed and bounded) sets of points S1,
S2 ⊂ R

2 is defined by

dH(S1, S2) = max{max
T∈S1

min
P∈S2

d(T, P ), max
P∈S2

min
T∈S1

d(P, T )}, (1)

where d denotes the Euclidean distance (d could be any other metric, too) and
the distance from a point T to a set S is defined in an obvious way: d(T, S) =
min
P∈S

d(T, P ).

For example, looking at two polygons in the plane ([1, 2]), and generally in
R

k, k ≥ 3,
P1 = T1T2 ∪ T2T3 ∪ · · ·Tn−1Tn ∪ TnT1,
P2 = P1P2 ∪ P2P3 ∪ · · · ∪ Pm−1Pm ∪ PmP1,
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(i.e., a polygon as a union of its sides), it is not difficult to see that the following
assertion holds.

The Hausdorff distance between two polygons P1, P2 in R
k, k ≥ 2 is given by

dH(P1,P2) = max{d(T1,P2), . . . , d(Tn,P2), d(P1,P1), . . . , d(Pm,P1)} ,

where

d(Ti,P2) = min{d(Ti, P1P2), . . . , d(Ti, Pm−1Pm), d(Ti, PmP1)}, i = 1, . . . , n,

d(Pj ,P1) = min{d(Pj , T1T2), . . . , d(Pj , Tn−1Pn), d(Pj , TnT1)}, j = 1, . . . ,m,

and d(Ti, P1P2), . . . ,d(Pj , TnT1) denote the corresponding distances from a point to
a segment.

In Section 2, we give a formula for the Hausdorff distance between two circles in
the plane and between two hyperspheres in R

n, n ≥ 3. In Section 3, we deal with
the Hausdorff distance between a segment and a circle in the plane, and generally
between a segment and a hypersphere in R

n, n ≥ 3. In Section 4, we adopt the
modified Hausdorff distance between a segment and an ellipse in the plane, and
generally between a segment and hyper-ellipsoid in R

n, n ≥ 3, by means of the
Mahalanobis distance. In Section 5, the modified Hausdorff distance between two
ellipses is obtained as result of a few calculations. In Section 6, we give concluding
remarks about Hausdorff distances between the geometric objects taken into account
in the paper.

2. The Hausdorff distance between two hyperspheres

Comparing circles by using the Hausdorff distance appears e.g. in multiple circle de-
tection problems ([10]). Let two circles k1 = (C1(p1, q1); r1) and k2 = (C2(p2, q2); r2)
be given in the plane (with center Ci, radius ri, i = 1, 2).

It is well known that the distance from a point T to a circle ki is given by

d(T, ki) = min
P∈ki

d(T, P ) = |d(T,Ci)− ri| , i = 1, 2.

In accordance with (1), the Hausdorff distance between two circles k1 and k2 is
defined by

dH(k1, k2) = max{max
T∈k1

|d(T,C2)− r2|,max
P∈k2

|d(P,C1)− r1| }. (2)

In [12], it is shown that the following formula holds.

Proposition 1. For the Hausdorff distance between two circles k1 and k2 in the
plane there holds

dH(k1, k2) = d(C1, C2) + |r2 − r1| =
√

(p2 − p1)2 + (q2 − q1)2 + |r2 − r1| . (3)

The proof can be seen in [12]. Formula (3) is proved by means of four possible
locations of two circles (Figure 1). In each of these cases one can show that this
formula holds.
Formula (3) can be generalized for hyperspheres in R

n, n ≥ 3.



The Hausdorff distance between some sets 249

(a) 0 < r1 ≤ d− r2 < d+ r2 (b) 0 ≤ d− r2 < r1 < d+ r2

(c) −r1 ≤ d− r2 < 0 < r1 < d+ r2 (d) d− r2 < −r1 < r1 < d+ r2

Figure 1: Possible positions of circles k1, k2

Proposition 2. Let two hyperspheres Sn−1
i = {T ∈ R

n : d(Ci, T ) = ri} ⊂ R
n, n ≥

3, i = 1, 2, be given. The Hausdorff distance between these two hyperspheres has the
same form as (3):

dH(Sn−1
1 , Sn−1

2 ) = d(C1, C2) + |r2 − r1| .

Proof. Let us look at the space R
3. For any point T of the sphere k1 one can look

at the plane through T and centers C1, C2. This plane intersects two spheres in
corresponding two (main) circles. In this way, the problem of the Hausdorff distance
is reduced to the case in the plane, which is proved by Proposition 1. Further, one
shows by induction that the formula holds in R

n, too.

3. The Hausdorff distance between a segment and a hyper-

sphere

Let two different types of objects in the plane be given: a segment l = T1T2 and a
circle k with the center C = (xC , yC) and the radius r > 0.

In accordance with (1), the Hausdorff distance between the segment l and the
circle k is defined by

dH(l, k) = max{max
T∈l

d(T, k),max
P∈k

d(P, l) }. (4)

Firstly, this gives rise to the following problem:

max
T∈l

|d(T,C)− r| = ?,

since d(T, k) = |d(T,C)− r|. It is not difficult to see that the maximum is attained
at some of the following points of the segment l: at the endpoints T1 or T2, or at
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the orthogonal projection C′ of the center C onto the line T1T2 provided that C′

belongs to the segment (Figure 2).

The distance from the point C to C′ has the form

d(C,C′) = ‖
−−→
CC′‖ = ‖

−−→
CT1 + λC

−−→
T1T2‖,

where

λC =
‖
−−→
T1C‖ · cos∠(

−−→
T1C,

−−→
T1T2)

‖
−−→
T1T2‖

=

−−→
T1C ·

−−→
T1T2

‖
−−→
T1T2‖2

.

Figure 2: Distances from points on the segment l to the circle k

Therefore,

max
T∈l

|d(T,C)− r| = max{|d(T1, C)− r|, |d(T2, C)− r|, (5)

{

|d(C,C′)− r|, if λC ∈ [0, 1]
0, if λC 6∈ [0, 1]

}

}.

Figure 3: Distances from points of the circle k to the segment l
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Secondly, with regard to (4), one has to find a maximum distance from points
P ∈ k to the segment l (Figure 3):

max
P∈k

d(P, l) = ?

Taking into account the formula for the distance from the point C to the seg-
ment l,

d(C, l) = min
T∈l

d(C, T ) =

{

d(C,C
′

), if λC ∈ [0, 1]
min{d(C, T1), d(C, T2)}, if λC 6∈ [0, 1]

, (6)

it is not difficult to see that the following holds:
a) if C′ ∈ l (i.e., if λC ∈ [0, 1]), then max

P∈k
d(P, l) = d(C,C′) + r, where C′ is an

orthogonal projection of the center C onto the segment l;
b) if C′ /∈ l (i.e., if λC 6∈ [0, 1]), then max

P∈k
d(P, l) = min{d(C, T1), d(C, T2)} + r.

Therefore, it follows that

max
P∈k

d(P, l) =

{

d(C,C′) + r, if λC ∈ [0, 1]
min{d(C, T1), d(C, T2)}+ r, if λC 6∈ [0, 1]

. (7)

So, the following proposition follows from (4), (5) and (7).

Proposition 3. The Hausdorff distance between the segment l and the circle k is
determined by the following expression:

dH(l, k) = max{|d(T1, C)− r|, |d(T2, C)− r|,
{

d(C,C′) + r, λC ∈ [0, 1]
min{d(C, T1), d(C, T2)}+ r, λC 6∈ [0, 1]

}

}. (8)

Furthermore, formula (8) also holds in the case of the space R
n, n ≥ 3.

Proposition 4. The Hausdorff distance between the segment and the hypersphere
in R

n, n ≥ 3, is determined by the same expression as (8).

Proof. Since formulae for distances from a point to a segment (6) and from a
point to a circle in the plane analogously hold for a segment and a hypersphere in
R

n, n ≥ 3, formula (8) holds in R
n, too.

4. A modified Hausdorff distance between a segment and an

ellipse by using the Mahalanobis distance

Let an ellipse be given by the equation

x2

a2
+

y2

b2
= 1 (9)

(without loss of generality, assume that its center C = O = (0, 0) and half-axes are
parallel to coordinate axes).
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Remark 1. Since the Euclidean distance from a point to an ellipse is more compli-
cated than from a point to a circle, we are going to use here a Mahalanobis distance-
like function dM : R2 × R

2 → R+, (see, e.g., [5, 13])

dM (u, v;S) = (u− v)TS−1(u− v), (10)

where S ∈ R
2×2 is a positive definite symmetric matrix. Namely, in that case ellipse

(9) is expressed as a transformed circle, i.e., in the form of a Mahalanobis circle
(M-circle)

E(C, 1;S) = {u ∈ R
2 : dM (u,C;S) = 1}, (11)

where radius r = 1, center C = (0, 0), and matrix S = diag(a2, b2). Notice that in
this case S−1 = diag(1/a2, 1/b2).

In order to obtain an expression for the Hausdorff distance between a segment
and an ellipse by using Mahalanobis distances (M-distances) (10), one should define
an M-distance from the point T ∈ R

2 to ellipse (11). Since the ellipse is an M-
circle, the M-distance from a point T ∈ R

2 to the M-circle E(C, 1;S) is given by the
expression (analogously to the Euclidean distance from a point to a circle)

min
P∈E

√

dM (T, P ;S) = |
√

dM (T,C;S)− 1| . (12)

Then one can apply expressions analogous to the ones used in Section 3, by using
the M-distance instead of the Euclidean distance.

In accordance with (4), the modified Hausdorff distance between the segment
l ≡ T1T2 and the ellipse, i.e., M-circle E is given by

DH(l, E) = max{max
T∈l

|
√

dM (T,C;S)− 1|,max
P∈E

min
T∈l

√

dM (P, T ;S) }. (13)

Analogously to the case of a simple circle in Section 3, the maximum of distances
|
√

dM (T,C;S) − 1| is attained at some of the following points of the segment l:
endpoints T1 or T2, or at the projection of C′ of the center C onto the line T1T2

provided that C′ is situated on the segment. (It is supposed that C = O = (0, 0).)
Therefore, analogously to formula (5) we obtain

max
T∈l

|
√

dM (T,C;S)− 1 | = max{|
√

dM (T1, C;S)− 1|, |
√

dM (T2, C;S)− 1|,

{

|
√

dM (C,C′;S)− 1|, λC ∈ [0, 1]
0, λC 6∈ [0, 1]

}

}, (14)

where

dM (C,C′;S) = dM (T1 − C + λC(T2 − T1), O;S),

λC =
− 1

a2 x1(x2 − x1)−
1
b2
y1(y2 − y1)

dM (T1, T2;S)
=

(C − T1)
T · S−1 · (T2 − T1)

dM (T1, T2;S)
.

With regard to the second part of (13), denoting the M-distance from a point P ∈ E
to the segment l by min

T∈l

√

dM (P, T ;S) =
√

dM (P, l), one has to find a maximum:

max
P∈E

√

dM (P, l) = ?
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Then one obtains (analogously to formula (7))

max
P∈E

√

dM (P, l) =

{
√

dM (C,C′;S) + 1, λC ∈ [0, 1]

min{
√

dM (C, T1;S),
√

dM (C, T2;S)}+ 1, λC 6∈ [0, 1] .
(15)

So, from (13), (14) and (15) we obtain the following assertion (analogously to
(8)).

Proposition 5. The modified Hausdorff distance between the segment l and the
M-circle E has the form:

DH(l, E) = max{|
√

dM (T1, C;S)− 1|, |
√

dM (T2, C;S)− 1|,
{

√

dM (C,C′;S) + 1, λC ∈ [0, 1]

min{
√

dM (C, T1;S),
√

dM (C, T2;S)}+ 1, λC 6∈ [0, 1]

}

}. (16)

Remark 2. Furthermore, formula (16) can be generalized in R
n, n ≥ 3. Let a

hyper-ellipsoid in R
n be given by equation

x2
1

a21
+

x2
2

a22
+ . . .+

x2
n

a2n
= 1 . (17)

A Mahalanobis distance-like function dM : Rn×R
n → R+ is defined by the expression

analogous to (10). Analogously, in this case hyper-ellipsoid (17) is expressed in the
form of a Mahalanobis hypersphere

H(C, 1;S) = {u ∈ R
n : dM (u,C;S) = 1}, (18)

where radius r = 1, center C = (0, . . . , 0), and
matrix S−1 = diag(1/a21, 1/a

2
2, . . . , 1/a

2
n).

So, the following proposition is obtained.

Proposition 6. The modified Hausdorff distance between the segment and the hyper-
ellipsoid in R

n, n ≥ 3, is determined by the expression analogous to (16).

5. The modified Hausdorff distance between two ellipses by

using the Mahalanobis distance

The problem of ellipse comparison appears e.g. in multiple ellipse detection problems
([9, 11]). With regard to Euclidean distances, ellipses are more complicated than
circles. Therefore, an appropriate distance measure for comparison of two ellipses
can be a modified Hausdorff distance by using the Mahalanobis distance, because
an ellipse is an M-circle by means of the M-distance ([5, 7, 8]).

Given two ellipses (Figure 4), without loss of generality, assume that the first
ellipse E1 has a center in the origin C1 = (0, 0) and its half-axes a1, b1 are parallel
to coordinate axes. Then the ellipse E1 ≡ E(C1, 1;S1) is expressed as a transformed
circle, i.e., in the form of a Mahalanobis circle (11), where S1 = diag(a21, b

2
1).
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Figure 4: Ellipses E1 and E2

Let the second ellipse E2 be defined by its five parameters, i.e., the center C2 =
(p, q), lengths of half-axes a2, b2, and the angle ϕ between the half-axis a2 and the
positive direction of the coordinate axis 0x. So, the equation of the ellipse E2 is

[(x− p) cosϕ+ (y − q) sinϕ]2

a22
+

[−(x− p) sinϕ+ (y − q) cosϕ]2

b22
= 1 . (19)

By means of Mahalanobis distance-like function (10), ellipse (19) is expressed in the
form of an M-circle

E2 = E(C2, 1;S2) = {u ∈ R
2 : (u − C2)

TS−1
2 (u− C2) = 1}, (20)

with the radius equal to 1, where S2 is a symmetric positive definite matrix

S2 = U

[

a22 0
0 b22

]

UT and U =

[

cosϕ − sinϕ
sinϕ cosϕ

]

. (21)

In order to obtain an expression for the modified Hausdorff distance between two
ellipses (i.e., M-circles) by means of the M-distance, we use expression (12) for the
M-distance from a point to an M-circle.

In accordance with (4) and (12), we define the modified Hausdorff distance be-
tween two M-circles E1 and E2:

DH(E1, E2) = max{max
T∈E1

|
√

dM (T,C2;S2)− 1|, max
P∈E2

|
√

dM (P,C1;S1)− 1| }. (22)

Firstly, look at the problem: max
P∈E2

|
√

dM (P,C1;S1)− 1| =?.

By means of a parametric equation of the ellipse E2
{

x = p+ a2 cosϕ cos t− b2 sinϕ sin t
y = q + a2 sinϕ cos t+ b2 cosϕ sin t

, t ∈ [0, 2π],

it follows that

dM (P,C1;S1) =
(p+ a2 cosϕ cos t− b2 sinϕ sin t)2

a21

+
(q + a2 sinϕ cos t+ b2 cosϕ sin t)2

b21
= g(t).
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Function g(t) ≥ 0 is continuous, differentiable and periodic.
Therefore, the continuous function |

√

g(t)− 1| ≥ 0 attains the global maximum
on [0, 2π], at some of stationary points of the function g(t) 6= 1, or for g(t) = 0.

Stationary points of the function g(t) ≥ 0 can be found as a solution of the
equation

g′(t) =
(p+ a2 cosϕ cos t− b2 sinϕ sin t) · (−a2 cosϕ sin t− b2 sinϕ cos t)

a21

+
(q + a2 sinϕ cos t+ b2 cosϕ sin t) · (−a2 sinϕ sin t+ b2 cosϕ cos t)

b21
= 0,

(23)

t ∈ [0, 2π].
Equation (23) can be shown in the form of an algebraic equation of the fourth

order in the variable cos t = u. So, by means of the formula of the Ferrari method,
one can find its set of real solutions {t11, . . . , t1m1

}. Following that, the global
maximum on the interval [0, 2π] can be easily found:

max
P∈E2

|
√

dM (P,C1;S1)− 1| = max
t∈{t11,...,t1m1

}
|
√

g(t)− 1|. (24)

Secondly, with regard to (22), we look at the problem

max
T∈E1

|
√

dM (T,C2;S2)− 1| = ?

By means of a parametric equation of the ellipse E1
{

x = a1 cos t
y = b1 sin t

t ∈ [0, 2π],

it follows that

dM (T,C2;S2) =
(a1 cosϕ cos t+ b1 sinϕ sin t− p cosϕ− q sinϕ)2

a22

+
(−a1 sinϕ cos t+ b1 cosϕ sin t+ p sinϕ− q cosϕ)2

b22
= f(t).

Function f(t) ≥ 0 is continuous, differentiable and periodic.
Therefore, the continuous function |

√

f(t)− 1| ≥ 0 attains the global maximum
on [0, 2π], at some of stationary points of the function f(t) 6= 1, or for f(t) = 0.

Stationary points of the function f(t) ≥ 0 can be found as a solution of the
equation f ′(t) = 0, i.e.,

(a1 cosϕ cos t+ b1 sinϕ sin t− p cosϕ− q sinϕ) · (−a1 cosϕ sin t+ b1 sinϕ cos t)

a2
2

+
(−a1 sinϕ cos t+ b1 cosϕ sin t+ p sinϕ− q cosϕ) · (a1 sinϕ sin t+ b1 cosϕ cos t)

b22
= 0,

(25)

where t ∈ [0, 2π].
Analogously to the previous case, equation (25) can be shown in the form of an

algebraic equation of the fourth order in the variable cos t = u. So, by means of the
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formula of the Ferrari method, one can find its set of real solutions {t21, . . . , t2m2
}.

Following that, the global maximum on the interval [0, 2π] can be easily found:

max
T∈E1

|
√

dM (T,C2;S2)− 1| = max
t∈{t21,...,t2m2

}
|
√

f(t)− 1|. (26)

So, from (22), (24) and (26) we obtain the following proposition.

Proposition 7. The modified Hausdorff distance between two ellipses by means of
M-distances has the form:

DH(E1, E2) = max{ max
t∈{t21,...,t2m2

}
|
√

f(t)− 1|, max
t∈{t11,...,t1m1

}
|
√

g(t)− 1|}.

Example 1. In order to illustrate the proposed modified Hausdorff distance between
two ellipses E1 and E2, three particular cases are given in Table 1. The correspond-
ing quantities DH(E1, E2) are obtained. In the last column, a normalized modified
Hausdorff distance between two ellipses is also calculated. Modeled on the so-called
normalized similarity measure for pairs of ellipses ([8]), we adopt a normalized mod-
ified Hausdorff distance between two ellipses by the following expression:

e−DH (E1,E2) . (27)

Let us note that the normalized (modified) Hausdorff distances have got the values
in the interval [0, 1], and the value closer to 1 describes the larger similarity, i.e., the
smaller difference between the ellipses (or in general, between two geometric objects
that are considered).

centers of ellipses half-axes of ellipses ϕ DH (E1, E2) e−DH(E1,E2)

C1 = (0, 0), a1 = 4, b1 = 3 ϕ1 = π/180
C2 = (0.01, 0.02), a2 = 4.02, b2 = 3.01 0.0128222 0.98726

C1 = (0, 0), a1 = 4, b1 = 2 ϕ1 = π/180
C2 = (0.1, 0.2), a2 = 4.2, b2 = 2.1 0.149691 0.860974

C1 = (0, 0), a1 = 4, b1 = 2 ϕ1 = π/3
C2 = (1.5, 1.2), a2 = 5, b2 = 3 1.78109 0.168454

Table 1: Modified Hausdorff distance between two ellipses

6. Conclusion

We consider the Hausdorff distance between some sets of points in R
n, n ≥ 2. Firstly,

the formula for the Hausdorff distance between two hyperspheres in R
n, n ≥ 2, is

given.
Looking at a segment and a circle in the plane, and generally a segment and a

hypersphere in R
n, n ≥ 3, we obtain the expression of the Hausdorff distance for

that case. Then, in the case of a segment and an ellipse in the plane, and generally
between a segment and a hyper-ellipsoid in R

n, n ≥ 3, we adopt the modified
Hausdorff distance between them by means of the Mahalanobis distance.

Finally, using Mahalanobis distances and taking into account that ellipses are M-
circles, we give expressions which have a few calculations for obtaining the modified
Hausdorff distances between two ellipses.
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[3] M.Bartoň, I. Hanniel, G. Elber, M.Kim, Precise Hausdorff distance computation

between polygonal meshes, Comput. Aided Geom. Des. 27(2010), 580–591.
[4] V.Berinde, M.Pacurar, The role of the Pompeiu-Hausdorff metric in fixed point

theory, Creat. Math. Inform. 22(2013), 143–150.
[5] J. C.Bezdek, J. Keller, R.Krisnapuram, N.R. Pal, Fuzzy models and algorithms

for pattern recognition and image processing, Springer, Berlin, 2005.
[6] M.M.Deza, E.Deza, Encyclopedia of distances, Springer, Berlin, 2009.
[7] B.Durak, A classification algorithm using Mahalanobis distances of data with appli-

cations on biomedical data sets, Ph.D. thesis, The Graduate School of Natural and
Applied Sciences of Middle East Technical University, Ankara, 2011.
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