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Departamento de Matemáticas y Estad́ıstica, Universidad Nacional de Colombia, Sede
Manizales, Cra 27 #62-60, Manizales 17004, Caldas, Colombia

Received January 10, 2024; accepted January 10, 2025

Abstract. In this paper, we study the PSV construction, which provides a step by step
method for obtaining tame translation surfaces with a suitable Veech group. In addition, we
slightly modify this construction, and for each finitely generated subgroup G < GL+(2,R)
without contracting elements, we produce a tame translation surface S with infinite genus
such that its Veech group is G. Furthermore, the ends space of S can be written as B ⊔ U ,
where B is homeomorphic to the ends space of the group G, and U is a countable, discrete,
dense, and open subset of the ends space of S.

AMS subject classifications: 05C3, 05C25, 52B15, 05C07

Keywords: tame translation surface, Veech group, infinite-genus surface, PSV construc-
tion, ends of a group

1. Introduction

Geometrically, an end of a topological space is a point at infinity. In [9], Freudenthal
introduced the concept of ends and explored some of its applications in group theory.
One can define the ends space Ends(G) of a finitely generated group G as the ends
space of the Cayley graph Cay(G,H), where H is a generating set of G (see [10,
13]). In the context of orientable surfaces, Kerékjártó [17] studied their ends and
introduced the classification of non-compact orientable surfaces, which determines
the topological type of any orientable surface S by its genus g(S) ∈ N∪{∞} and two
closed subsets, Ends∞(S) ⊆ Ends(S), of the Cantor set. These subsets are referred
to as the ends space of S, and the ends of S having (infinite) genus (see [28]). Our
focus is on studying surfaces with infinite genus.

Translation surfaces have naturally appeared in various contexts: dynamical
systems (see [16, 15]), Teichmüller theory (see [18, 21]), Riemann surfaces (see [20,
34]), among others. Our focus is on the so-called tame translation surfaces. Using
the charts of a translation surface S, one can pull back the standard Riemannian
metric on R2 to equip the surface S with a flat Riemannian metric µ. This flat
metric induces a distance map d on S. A translation surface S is said to be tame
[30] if, for each point x ∈ Ŝ (where Ŝ is the metric completion of S with respect to
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d), there is a neighborhood Ux ⊂ Ŝ that is isometric to either an open subset of the
Euclidean plane or an open subset around a ramification point of a (finite or infinite)
cyclic branched covering of the unit disk. It is worth noting that if S is a compact
translation surface, then S is necessarily tame. Several authors have studied such
surfaces (see, for instance, [3, 7, 8, 26, 31]), which provides strong motivation for
our research.

During the 1980s, Veech [32] associated a group of matrices Γ < GL(2,R) to each
translation surface, now commonly known as the Veech group of S. He proved that
if the Veech group Γ(S) of a compact translation surface S is a lattice–meaning Γ(S)
is a Fuchsian group such that the quotient space H2/Γ has a finite hyperbolic area–
then the behavior of the geodesic flow on S exhibits dynamical properties similar to
those described by Weyl’s theorem for the geodesic flow on the torus. This result
is known as the Veech’s dichotomy. It has since attracted the attention of many
researchers (see, for example, [6, 12, 14]).

The Veech group associated to a compact translation surface is a Fuchsian group
[33]. In the case of a tame translation surface, if Γ(S) is the Veech group of the tame
translation surface S, then one of the following holds [24, Theorem 1.1]:

(1) Γ(S) is countable and without contracting elements, it means Γ(S) is disjoint
from the set {A ∈ GL+(2,R) : ∥Av∥ < ∥v∥ for all v ∈ R2 \ {0}}, where ∥ ∥ is
the Euclidean norm on R2, or

(2) Γ(S) is conjugated to P :=

{(
1 t
0 s

)
: t ∈ R and s ∈ R+

}
, or

(3) Γ(S) is conjugated to P ′ < GL+(2,R), the subgroup generated by P and −Id,
or

(4) Γ(S) is equal to GL+(2,R).

Our work contributes to the problem of realizing subgroups of GL+(2,R) as
Veech groups of (non-compact) tame translation surfaces. We will discuss some
of the studies involved in the problem of realizing groups as symmetry groups of
translation surface. In [24], the authors developed a step-by-step process referred to
as the PSV construction, aimed at constructing, for each subgroup G < GL(2,R)
without contracting elements, a tame Loch Ness monster with Veech group G. Up to
homeomorphism, the Loch Ness monster is the only surface with infinite genus and a
unique end [23]. In the case of origamis, translation surfaces formed by appropriately
gluing unit squares, any finite group can be represented as the automorphism group
of the Loch Ness monster when it is viewed as an origami [11]. The PSV construction,
with slight modifications, was used in [25] to realize any subgroup G < GL+(2,R)
without contracting elements as the Veech group of a large class of tame translation
surfaces of infinite genus. These results, along with those addressing the realization
of Veech groups for translation surfaces with non-self-similar end spaces [22], have
been extended to resolve the problem of realizing symmetry groups of infinite genus
translation surfaces [2].

We have also explored and made slight modifications to the PSV construction,
resulting in a theorem that establishes an explicit connection between the ends space
of a tame translation surface and the ends space of its respective Veech group.
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Theorem 1. Given a finitely generated subgroup G of GL+(2,R) without contracting
elements, there exists a tame translation surface S whose Veech group is G. The
ends space Ends(S) of S satisfies:

(1) If G is finite, then the surface S has as many ends as there are elements in
the group G, and each end has infinite genus.

(2) If G is not finite, then the ends space of S can be represented as

Ends(S) = Ends∞(S) = B ⊔ U ,

where B is a closed subset of Ends(S) homeomorphic to Ends(G), and U is a
countable, discrete, dense, and open subset of Ends(S).

As the ends space of a finitely generated group has either zero, one, two, or
infinitely many ends [10, 13], we immediately obtain the following corollary:

Corollary 1. The ends space of the tame translation surface S is one of the follow-
ing:

(1) If the group G has one end, then Ends(S) is homeomorphic to the ordinal
number ω + 1. In other words, the ends space of S is homeomorphic to the
closure of

{
1
n : n ∈ N

}
.

(2) If the group G has two ends, then Ends(S) is homeomorphic to the ordinal
number ω · 2+1. This means that the ends space of S is homeomorphic to two
copies of the closure of

{
1
n : n ∈ N

}
.

(3) If the group G has infinitely many ends, then Ends(S) contains a subset home-
omorphic to the Cantor set, with its complement being a countable, discrete,
dense, and open subset of Ends(S).

The paper is structured as follows: In Section 2, we collect the principal tools
needed to understand the classification of non-compact surfaces theorem and explore
the concept of ends on groups. Section 3 provides an introduction to the theory
of tame translation surfaces and discusses the Veech group. Finally, Section 4 is
dedicated to proving our main result.

2. Ends

In this section, we shall introduce the concept of the space of ends of a topological
space X in its most general context. We shall also explore the classification theorem
of non-compact orientable surfaces based on their ends spaces. Finally, we shall
discuss the concept of ends of groups.

Definition 1 (see [9]). Let X be a locally compact, locally connected, connected, and
Hausdorff space, and let (Un)n∈N be an infinite nested sequence U1 ⊃ U2 ⊃ . . . of
non-empty connected open subsets of X, such that the following conditions hold:

(1) For each n ∈ N, the boundary ∂Un of Un is compact.
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(2) The intersection
⋂

n∈N
Un = ∅.

(3) For any compact subset K ⊂ X, there is m ∈ N such that K ∩ Um = ∅.

Two nested sequences (Un)n∈N and (U ′
n)n∈N are equivalent if for each n ∈ N, there

exist j, k ∈ N such that Un ⊃ U ′
j and U ′

n ⊃ Uk. The corresponding equivalence
classes of these sequences are called the ends of X. The ends space Ends(X) of X
is the space whose elements are the ends of X, and it is endowed with the following
topology: for any non-empty open subset U of X, such that its boundary ∂U is
compact, we define

U∗ := {[Un]n∈N ∈ Ends(X) | Uj ⊂ U for some j ∈ N} .

Then the set of all such U∗, where U is open and has a compact boundary in X,
forms a basis for the topology of Ends(X) (see [9, 1. Kapitel]).

Theorem 2 (see [27]). The space Ends(X), with the topology defined above, is
Hausdorff, totally disconnected, and compact.

2.1. Ends of a surface

A surface S is a connected 2-manifold without boundary, which may or may not
be closed. In this manuscript, we shall only consider orientable surfaces. By a
subsurface of S we mean an embedded surface, which is a closed subset of S, and
whose boundary consists of a finite number of nonintersecting simple closed curves.
Note that a subsurface may or may not be compact. The reduced genus of a compact
subsurface S̃ ⊂ S, with q(S̃) boundary curves and Euler characteristic χ(S̃), is the
number

g(S̃) = 1− 1

2

(
χ(S̃) + q(S̃)

)
.

The genus of the surface S is the supremum of the genera of its compact subsurfaces.
This genus may be a non-negative integer or ∞. The surface S is said to be planar
if it has genus zero; in other words, S is homeomorphic to an open of the complex
plane.

Remark 1. In this case, from the definition of ends given in Definition 1, we
may assume that for the sequence (Un)n∈N the closures Un are subsurfaces. In this
setting, an end [Un]n∈N of a surface S is called planar if there is l ∈ N such that the
subsurface U l ⊂ S is planar.

We define the subset Ends∞(S) of Ends(S) to consist of all ends of S, which
are not planar (ends having infinite genus). It follows directly from the definition
that Ends∞(S) is a closed subset of Ends(S) (see [28, p. 261]), and the triplet
(g,Ends∞(S),Ends(S)), where g is the genus of S, is a topological invariant.

Theorem 3 (Classification of non-compact surfaces [17, 28]). Two surfaces S1 and
S2 having the same genus are topologically equivalent if and only if there exists a
homeomorphism f : Ends(S1) → Ends(S2) such that f(Ends∞(S1)) = Ends∞(S2).
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Definition 2 (see [23]). The Loch Ness monster is the unique, up to homeomor-
phism, infinite genus surface with exactly one end.

Remark 2 (see [29]). The surface S has m ends, for some m ∈ N, if and only if
for any compact subset K ⊂ S, there is a compact K

′ ⊂ S such that K ⊂ K
′
and

S \K ′
consists of m connected components.

2.2. Ends of a group

Given a generating set H (closed under inverse) of a group G, the Cayley graph of
G with respect to the generating set H is the graph Cay(G,H), where the vertices
are the elements of G, and there is an edge between two vertices g1 and g2 if and
only if there is h ∈ H such that g1h = g2. Throughout this paper, the Cayley graph
Cay(G,H) will be the geometric realization of an abstract graph [4, p. 226].

When the set H is finite, the Cayley graph Cay(G,H) is a locally compact,
locally connected, connected, and Hausdorff space. In this case, we define the ends
space of G as Ends(G) := Ends(Cay(G,H)).

Proposition 1 (see [19]). Let G be a finitely generated group. The ends space of
the Cayley graph of G does not depend on the choice of the finite generating set.

Theorem 4 (see [10, 13]). Let G be a finitely generated group. Then G has either
zero, one, two, or infinitely many ends.

3. Tame translation surfaces

An atlas A = {(Uα, ϕα)}α∈I on the surface S is called a translation atlas if S, except
for a subset of points Sing(S) ⊂ S, can be covered by the charts from such atlas.
Moreover, for any pair of charts (Uα, ϕα) and (Uβ , ϕβ) in A such that Uα ∩ Uβ ̸= ∅,
the associated transition map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) ⊂ R2 → ϕα(Uα ∩ Uβ) ⊂ R2

is locally the restriction of a translation. We assume that each point in Sing(S)
is non-removable, which means the translation atlas can not be extended to any
of the points in Sing(S). An element x in Sing(S) is called a singular point of S
or singularity. A translation structure on S is a maximal translation atlas on the
surface. If S admits a translation structure, it will be called a translation surface.

For a translation surface S, we can pull back the Euclidean (Riemannian) metric
of R2 via its translation structure; thus we obtain a flat Riemannian metric µ on
S. Let Ŝ denote the metric completion of S with respect to the flat Riemannian
metric µ. According to the uniformization theorem [1, p. 580], the only complete

translation surfaces S = Ŝ are the Euclidean plane, the torus, and the cylinder [5,
p. 193].

Definition 3 (see [30]). A translation surface S is said to be tame if for each point

x ∈ Ŝ, there exists a neighborhood Ux ⊂ Ŝ isometric to either:

(1) Some open subset of the Euclidean plane, or
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(2) An open subset of the ramification point of a (finite or infinite) cyclic branched
covering of the unit disk in the Euclidean plane.

In the latter case, if the neighborhood Ux is isometric to the finite cyclic branched
covering of finite order m ∈ N, then the point x is called a finite cone angle singu-
larity of angle 2mπ. If Ux is isometric to the infinite cyclic branched covering, then
x is called an infinite cone angle singularity.

We denote by Sing(Ŝ) the set of all finite and infinite cone angle singularities of

Ŝ. An element of Sing(Ŝ) is called a cone angle singularity of Ŝ, or simply a cone
point.

3.1. Saddle connection and markings

A saddle connection γ on a tame translation surface S is a geodesic interval joining
two cone points and not having cone points in its interior. In the translation structure
of S, we can find a chart (U,φ) such that the open U contains the saddle connection
γ, excluding its endpoints. The map φ sends γ to a straight line segment in R2.
This straight line segment can be oriented in two possible directions denoted by
[θ], [−θ] ∈ R/2πZ, for some θ ∈ R. Then we can associate to γ two oppositely
oriented vectors {v,−v} ⊂ R2, corresponding to directions [θ] and [−θ], respectively.
Moreover, the norm of these vectors is equal to the length of γ measured with respect
to the flat Riemannian metric µ on S. Each of these vectors is called a holonomy
vector of γ. Clearly, the holonomy vectors of γ are well-defined, that is, they do not
depend on the choice of the chart (U,φ).

A marking m on the tame translation surface S is a finite length geodesic not
having cone points inside it. Similarly to the case of saddle connection, we can
associate to the marking m two holonomy vectors {v,−v} ⊂ R2. Two markings are
said to be parallel if their respective holonomy vectors are also parallel. It does not
matter if the markings are on different surfaces [24, Definition 3.4].

Definition 4 (see [25]). Let m1 and m2 be two parallel markings having the same
length on translation surfaces S1 and S2, respectively. We cut S1 and S2 along m1

and m2, respectively, turning S1 and S2 into the surfaces with boundary S̃1 and
S̃2, respectively. Each of their boundaries is formed by two straight line segments.
Now, we consider the union S̃1 ∪ S̃2 and identify (glue) such (four) segments using
translations to obtain a connected tame translation surface S (see Figure 1). This
gluing relation of these segments will be denoted as m1 ∼glue m2, and called the
operation of gluing the markings m1 and m2. Then the surface S will be written in
the following form:

S := (S1 ∪ S2)/m1 ∼glue m2.

We say that S is obtained from S1 and S2 by regluing along m1 and m2.



Ends of groups and Veech groups 91

B

A

A

B

Figure 1: Gluing markings

3.2. Veech group

Let S be a tame translation surface. A homeomorphism T : Ŝ → Ŝ is called an
affine diffeomorphism if it satisfies the following properties:

(1) It sends cone points to cone points.

(2) The function T is an affine map in the local coordinates of the translation atlas
on S.

We denote by Aff+(S) the group of all affine orientations preserving diffeomorphism
from the tame translation surface S to itself.

Given a tame translation surface S and a map T ∈ Aff+(S), then using the
translation structure on S, we hold that the differential dT (p) of T at any point
p ∈ S is a constant matrix A that belongs to GL+(2,R). We then define the map

D : Aff+(S) → GL+(2,R),

where D(T ) is the differential matrix of T . Using the chain rule, it is easy to verify
that D is a group homomorphism.

Definition 5 (see [32]). The image of D, denoted by Γ(S), is called the Veech group
of S.

The group GL+(2,R) acts on the set of all translation surfaces by postcomposi-
tion on charts. More precisely, this action sends the couple (g, S) to the translation
surface Sg, which is called the affine copy of S. The translation structure on Sg is
obtained by postcomposing each chart on S by the affine transformation associated
to the matrix g. Further, this action defines an affine diffeomorphism fg : S → Sg,
where the differential dfg(p) of fg at any point p ∈ S is the matrix g.

4. Proof of Theorem 1

Let G be a finitely generated subgroup of GL+(2,R) without contracting elements,
and let H be a finite generating set of G. The set H can be written as H = {hj :
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j ∈ {1, . . . , J}}, for some J ∈ N. We shall obtain the surface S using the PSV
construction, which will be briefly outlined below. Afterward, we shall prove that S
is a tame translation surface with Veech group G. Finally, we will describe the ends
space of S.

4.1. PSV construction

For each countable subgroup G of GL+(2,R) without contracting elements, Przyty-
cki, Weitze-Schmithüsen, and Valdez, in [24, 4. Countable Veech group], described
a method to construct a tame translation surface homeomorphic to the Loch Ness
monster, with Veech group G. We refer to this method as the PSV construction.
From a metric spaces point of view, the process is as follows:

Step 1. The decorated surface

We build a suitable tame Loch Ness monster Sdec using copies of the Euclidean
plane and a cyclic branched covering of the Euclidean plane, which are appropriately
attached via gluing markings. The resulting surface Sdec is referred to as decorated.
For each hj ∈ H, we mark Sdec with two infinite families of (suitable) markings

hjM̌
−j :=

{
hjm̌

−j
i : ∀i ∈ N

}
and M−j :=

{
m−j

i : ∀i ∈ N
}
.

Step 2. The puzzle associated to the triplet (1, G,H)

For each g ∈ G, we take the affine copy Sg of the decorated surface Sdec. We then
define two families of markings on Sg:

ghjM̌
−j :=

{
ghjm̌

−j
i : ∀i ∈ N

}
and gM−j :=

{
gm−j

i : ∀i ∈ N
}
.

These families corresponded to the image of hjM̌
−j and M−j on Sdec (respectively)

under the diffeomorphism fg : Sdec → Sg. Thus, we define the puzzle associated to
the triplet (1, G,H) as

P(1, G,H) := {Sg : g ∈ G} ,

as defined in [25, Definition 3.1]. The term 1 means that the decorated surface has
only one end.

Step 3. The assembled surface S to the puzzle P(1, G,H).

We define the assembled surface to the puzzle P(1, G,H) (see [25, Definition 3.1]) as
follows:

S :=
⋃
g∈G

Sg

/
∼,

where ∼ is the equivalence relation given by the following gluing of the markings:
for each edge (g, ghj) of the Cayley graph Cay(G,H), the marking ghjm̌

−j
i on Sg is

glued to the marking ghjm
−j
i on Sghj

, for each i ∈ N.
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4.2. We employ PSV construction to obtain the surface S

Step 1. The decorated surface

The following auxiliary construction is necessary to obtain the decorated surface.

Construction 1 (Buffer surface). For each j ∈ {1, . . . , J}, we consider E(j, 1) and
E(j, 2) copies of the Euclidean plane, which are endowed with a fixed origin 0 and
an orthogonal basis β = {e1, e2}. We define markings on these surfaces, which are
described by their endpoints. On E(j, 1), we draw the families of markings:

M̌ j :=
{
m̌j

i := (4ie1, (4i+ 1)e1) : ∀i ∈ N
}
, and

L := {li := ((4i+ 2)e1, (4i+ 3)e1) : ∀i ∈ N} .

On E(j, 2) we take the family of markings:

L
′
:=

{
l
′

i := ((2i+ 1)e2, e1 + (2i+ 1)e2) : ∀i ∈ N
}
,

and the marking:
hjm̌

−j := (2e2, e1 + 2e2).

Finally, the marking li ∈ L on E(j, 1) and the marking l
′

i ∈ L
′
on E(j, 2) are glued,

for each i ∈ N. Thus, we obtain a tame Loch Ness monster

S(Id, hj), (1)

which is called the buffer surface associated to the element hj of H (see Figure 2).

-
6

0

m̌j
1 l1 m̌j

2 l2
. . .

E(j, 1)
-

6

0

l
′
1

hjm̌
−1

l
′
2

l
′
3

...
E(j, 2)

Figure 2: Buffer surface S(Id, hj)

Remark 3. The buffer surface S(Id, hj) is a modification of the surface appearing
in Construction 4.4 in [24]. We emphasize that the family of markings M̌ j and the
marking hjm̌

−j on S(Id, hj) have not been glued yet. In addition, the set of singular
points of S(Id, hj) consists of infinitely many cone angle singularities of angle 4π.
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Construction 2 (Decorated surface). We take E, the Euclidean plane, endowed
with a fixed origin 0, and an orthogonal basis β = {e1, e2}. Analogously, we shall de-
fine markings on this surface, described by their endpoints. For each j ∈ {1, . . . , J},
on E we define the families of markings:

M j :=
{
mj

i := ((2i− 1)e1 + je2, 2ie1 + je2) : ∀i ∈ N
}
, and

M := {mi := ((4i− 1)e1, 4ie1) : ∀i ∈ N} .

Now, we recursively draw new markings on E. For j = 1, we choose two suitable
real numbers x1 > 0 and y1 < 0 and define the marking:

m−1 := (x1e1 + y1e2, x1e1 + h−1
1 e1 + y1e2)

on E, such that m−1 is disjoint from the families of markings M and M j for each
j ∈ {1, . . . , J}.

For n ≤ J , we choose two suitable real numbers xn > 0 and yn < 0 and define
the marking:

m−n := (xne1 + yne2, xne1 + h−1
n e1 + yne2)

on E, such that m−n is disjoint from the families of markings M and M j for each
j ∈ {1, . . . , J}. Moreover, the marking m−n is also disjoint from the markings
m−1, . . . ,m−(n−1) defined in the previous steps.

Let π : Ẽ → E be the three fold cyclic covering of E, branched over the origin.
Then we denote as

M̃ := {m̃i : ∀i ∈ N}

one of the three sets of markings on Ẽ defined by π−1(M). Now, we take on E the
markings t1 := (e2, 2e2) and t2 := (−e2, −2e2), which will be used to generate new
markings on Ẽ. Then we denote as t̃1 and t̃2 one of the three markings on Ẽ defined
by π−1(t1) and π−1(t2), respectively, such that they are on the same fold of Ẽ as M̃ .

Finally, we take the union of surfaces E ∪ Ẽ
⋃

j∈{1,...,J} S(Id, hj) (see equation

(1)), and glue markings as follows:

(1) The markings t̃1 and t̃2 on Ẽ are glued.

(2) The marking mi on E is glued to the marking m̃i on Ẽ, for each i ∈ N.

(3) The marking mj
i on E is glued to the marking m̌j

i on S(Id, hj), for each i ∈ N
and each j ∈ {1, . . . , J}.

Thus, we obtain the tame Loch Ness monster

Sdec, (2)

which is called a decorated surface (see Figure 3).
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Ẽ

0̃

-
6

0̃

-
6

0̃

-

6

0

l
′
1

hjm̌
−1

l
′
2

l
′
3

...
E(j, 2)

-
6

0

m̌j
1 l1 m̌j

2 l2
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Figure 3: Decorated surface Sdec

Remark 4. For each j ∈ {1, . . . , J}, the markings hjm̌
−j and m−j on the decorated

surface Sdec have not been glued yet. Moreover, the surface Sdec has the following
properties:

(1) Its set of singular points consists of infinitely many cone angle singularities of
angle 4π, and only one cone angle singularity of angle 6π, which is denoted by
0̃.

(2) There are only three saddle connections γ1, γ2, and γ3, such that each one
of them has the singularity 0̃ as one of their endpoints (see Figure 3). The
holonomy vectors of these saddle connections are {±e1,±e2}.
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The surface Sdec is a slight modification of the surface appearing in Construction
4.6 in [24]. In that construction, the authors introduced a tame Loch Ness monster
with infinitely many markings on it. Nevertheless, in our case, we consider the same
surface but with only a subset of these markings. Additionally, the decorated surfaces
appearing in [25] cover different ends spaces; however, each of them has drawn an
infinite family of markings for each element of H. This implies that our decorated
surface Sdec is not studied in the aforementioned article.

Step 2. The puzzle associated to the triplet (1, G,H)

Let Sg be the affine copy of the decorated surface Sdec, for each g ∈ G. We denote
by ghjm̌

−j and gm−j (respectively) the markings on Sg, which are the images
of the markings hjm̌

−j and m−j (respectively) via the affine diffeomorphism fg :
Sdec → Sg, where j ∈ {1, . . . , J}. Thus, we define the puzzle associated to the triplet
(1, G,H) as

P(1, G,H) := {Sg : g ∈ G} .

The following lemma will be used to prove the tameness of our surface S.

Lemma 1 (see [24]). For every g ∈ G, the distance in Sg between the families of
markings {ghjm̌

−j : j ∈ {1, . . . , J}} and {gm−j : j ∈ {1, . . . , J}} is at least 1/
√
2.

Step 3. The assembled surface S to the puzzle P(1, G,H)

We consider the union
⋃

g∈G Sg and glue markings as follows: given the edge (g, ghj)

of the Cayley graph Cay(G,H), we glue the marking ghjm̌
−j on Sg to the marking

ghjm
−j on Sghj

.
We remark that, by construction, the markings ghjm̌

−j and ghjm
−j are parallel,

so the gluing is well-defined. Thus, the assembled surface to the puzzle P(1, G,H)
obtained from the above gluing is a translation surface denoted by

S :=
⋃
g∈G

Sg

/
∼ .

4.3. The surface S is a tame translation surface and its Veech
group is the subgroup G < GL+(2,R)

One can use several of the ideas described in [25, Theorem 3.7] to easily prove the
following lemmas.

Lemma 2. The translation surface S is tame.

Proof. We must show that S is a complete metric space with respect to its natural
flat metric d, and its set of singularities is discrete in S. Let (Ŝ, d̂) be the metric
completion space of (S, d). For each g ∈ G, we define the connected open subset

S′
g := Sg \

{
ghjm̌

−j , gm−j : j ∈ {1, . . . , J}
}
⊂ Sg, (3)
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which is obtained from Sg (see equation (2)) by removing the markings ghjm̌
−j and

gm−j for each j ∈ {1, . . . , J}. Using the inclusion map, the open subset S′
g ⊂ Sg can

be considered as a connected open subset of S. Then, the closure S′
g of S′

g in S is

complete. If we take a Cauchy sequence (xn)n∈N in S and the real number ε = 1
2
√
2
,

then there is a positive integer N(ε) ∈ N such that for all natural numbers m,n ≥
N(ε), the terms xm, xn satisfy d̂(xm, xn) < ε. By Lemma 1, there is g ∈ G such that
the open ball Bε(xN(ε)) is contained in S′

g. Since Bε(xN(ε)) ⊂ S′(g) is complete,

the Cauchy sequence (xn)n∈N converges within Bε(xN(ε)). The discreteness of the
singularities follows immediately from Lemma 1.

Lemma 3. The Veech group of S is G.

Proof. Given that the group G acts on P(1, G,H) := {Sg : g ∈ G} by post-
composition on charts, then if we fix a matrix g̃ ∈ G, for each g ∈ G, there exists a
natural affine diffeomorphism fg̃g : Sg → Sg̃g, satisfying the following properties:

(1) The differential of fg̃g is the matrix g̃.

(2) The map fg̃g sends parallel markings to parallel markings.

Hence, the map f :
⋃

g∈G

Sg →
⋃

g∈G

Sg̃g defined by f |Sg
:= fg̃g, is a gluing markings-

preserving map. This yields an affine diffeomorphism in the quotient Fg̃ : S → S
with differential matrix g̃. Thus, we conclude that G < Γ(S). Conversely, we
consider f : S → S an affine orientation preserving diffeomorphism different from
the identity. From Remark 4, for each g ∈ G, the surface Sg has one singularity of
angle 6π, which is denoted by 0̃g. There are only three saddle connections γg

1 , γ
g
2 ,

and γg
3 such that each one of them has that singularity as one of their endpoints.

The holonomy vectors associated to these saddle connections are {±g · e1,±g · e2}.
The function f sends the singularity 0̃Id to the singularity 0̃g for some g ∈ G, and
the differential matrix df of f must map {±e1,±e2} to {±g · e1,±g · e2}. The only
possibility is that df = g. Thus, we conclude that Γ(S) < G.

4.4. Ends space of the surface S

The description of the ends space of S, as stated in Theorem 1, follows from the
following lemmas.

Lemma 4. If G is finite, then the surface S has as many ends as there are elements
in the group G, and each end has infinite genus.

Lemma 5. If G is not finite, then the ends space of S can be represented in the
form

Ends(S) = Ends∞(S) = B ⊔ U ,

where B is a closed subset of Ends(S) homeomorphic to Ends(G), and U is a count-
able, dense, and open subset of Ends(S).
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Proof of Lemma 4

The group G has cardinality k for some k ∈ N. Let K be a compact subset of S;
we must prove that there exists a compact subset K ′ ⊂ S such that K ⊂ K ′, and
S \ K ′ consists of k open connected components, each one of them having infinite
genus.

For each g ∈ G, the affine copy Sg is homeomorphic to the Loch Ness monster
(see equation (2)). Since the generating set H of G is finite, the set of markings{

ghjm̌
−j , gm−j : j ∈ {1, . . . , J}

}
on the affine copy Sg is finite. We consider the connected subsurface S′

g of Sg as in
equation (3), which has the following properties:

(1) This subsurface S′
g has infinite genus, and via the inclusion map, it can be

considered as a connected subsurface of S with infinite genus.

(2) The boundary ∂S′
g of S′

g in S is compact because it is conformed by a finitely
many disjoint closed curves.

As G is finite, from the preceding properties we hold that the set

S \
⋃
g∈G

∂S′
g =

⋃
g∈G

S′
g

consists of k open connected components, and each one of them has infinite genus.
On the other hand, let Kg be the closure of the set K ∩S′

g in Sg for each g ∈ G.
As Kg is a compact subset of Sg,0 there exists a compact subset K ′

g ⊂ Sg such that

Kg ∪
{
ghjm̌

−j , gm−j : j ∈ {1, . . . , J}
}
⊂ K ′

g,

and Sg \K ′
g consist of an open connected with infinite genus. We take K ′ to be the

closure of ⋃
g∈G

(
K ′

g \ {ghjm̌
−j , gm−j : j ∈ {1, . . . , J}}

)
in S. As G is finite, then K ′ is a compact subset of S. By construction, we hold
that K ⊂ K ′, and the set

S \K ′ =
⋃
g∈G

(Sg \K ′
g) ⊂

⋃
g∈G

S′
g

consists of k open connected components and each one of them having infinite genus.

Proof of Lemma 5

The sketch of the proof is the following. We begin by defining the set U from the
ends of the affine copies Sg, and we will prove that it is a countable, discrete, and
open subset of Ends(S). Then, we shall give an appropriate embedding i∗ from
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Ends(G) to Ends(S), where the image of Ends(G) under i∗ will be denoted by B.
By using an embedding from the Cayley graph Cay(G,H) to the surface S, we shall
establish the equality

Ends(S) = Ends∞(S) = B ⊔ U ,

where B is closed, and U is a dense and open subset of Ends(S).

Step 1. The set U

For each g ∈ G, we take the subsurface S′
g ⊂ Sg defined in equation (3). Recall

that the boundary ∂S′
g of the subsurface S′

g is compact because it consists of finitely
many disjoint closed curves. Let [U(g)n]n∈N be the unique end of the Loch Ness
monster Sg. Without loss of generality, we can assume that U(g)n ⊂ S′

g for each
n ∈ N. From the inclusion map, the surface S′

g can be considered as a subsurface
of S. Then the sequence (U(g)n)n∈N of Sg defines an end with infinite genus of the
surface S.

Remark 5. For any two different g ̸= g̃ ∈ G, the subsurfaces S′
g and S′

g̃ of S are
disjoint.

From the previous remark, we obtain the countable set U conformed by different
ends of S given by

U := {[U(g)n]n∈N ∈ Ends(S) : g ∈ G} ⊂ Ends(S). (4)

Let us note that the subset U ⊂ Ends(S) is both discrete and open. This is
a consequence of the following fact. For each g ∈ G, the open subset U(g)1 of S
has a compact boundary ∂U(g)1 in S. Thus, we define the open subset (U(g)1)

∗ of
Ends(S), which satisfies

(U(g)1)
∗ ∩ U = {[U(g)n]n∈N} .

Step 2. The embedding i∗ : Ends(G) ↪→ Ends(S)

Let S′
g be the closure in S of the surface S′

g (see equation (3)). Given a non-
empty connected open subset W of Cay(G,H) with compact boundary ∂W , we can
suppose, without loss of generality, that the boundary ∂W ⊂ V (Cay(G,H)) = G.
We then define the subset W̃ ⊂ S given by

W̃ := Int

 ⋃
g∈G∩(W∪∂W )

S′
g

 ⊂ S. (5)

This set W̃ is a non-empty, connected, and open subset of S with a compact bound-
ary. Moreover, it is a subsurface of S with infinite genus. In the following remark,
we state two properties of this object, which can be easily deduced.

Remark 6. Given that W and V are two non-empty, connected, and open subsets
of Cay(G,H), each one having compact boundaries ∂W and ∂V , respectively, such
that ∂W, ∂V ⊂ G, then
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(1) If W ⊃ V , then W̃ ⊃ Ṽ .

(2) If W ∩ V = ∅, then W̃ ∩ Ṽ = ∅.

From the above remark, the end [Wn]n∈N of the group G naturally defines the end

[W̃n]n∈N of the surface S, which has infinite genus. Hence, we obtain a well-defined
map i∗ : Ends(G) → Ends(S) given by

[Wn]n∈N 7→ [W̃n]n∈N. (6)

Claim 1. The map i∗ is an embedding.

Proof. We must show that i∗ is injective. Let [Wn]n∈N and [Vn]n∈N be two different
ends of G. Then, there is l ∈ N such that Wl ∩ Vl = ∅. By item (2) of Remark
6, it follows that W̃l ∩ Ṽl = ∅. It proves that the ends i∗([Wn]n∈N) = [W̃n]n∈N and
i∗([Vn]n∈N) = [Ṽn]n∈N in Ends(S) are different.

Continuity. We consider an end [Wn]n∈N of the group G and an open subset
V ⊂ S with a compact boundary such that i∗([Wn]n∈N) = [W̃n]n∈N ∈ V ∗ ⊂ Ends(S).
We must prove that there is a neighborhood Z∗ ⊂ Ends(G) of [Wn]n∈N such that
i∗ (Z

∗) ⊂ V ∗. Given that [W̃n]n∈N ∈ V ∗, there exists some k ∈ N such that

W̃k ⊂ V.

We take the open subset Wk of the Cayley graph Cay(G,H), which defines the open
subset W̃ (see equation (5)), and consider the open

Z∗ := (Wk)
∗

of Ends(G), which is a neighborhood of [Wn]n∈N. To ensure that i∗(Z
∗) ⊂ V ∗, we

consider any end [Un]n∈N ∈ Ends(G) such that [Un]n∈N ∈ Z∗ = (Wk)
∗, and check

that i∗([Un]n∈N) = [Ũn]n∈N ∈ V ∗. Since Um ⊂ Wk for some m ∈ N, it follows from
item (1) of Remark 6 that

Ũm ⊂ W̃k.

As W̃k ⊂ V , we conclude that Ũm ⊂ V , which implies that i∗([Un]n∈N) = [Ũn]n∈N ∈
V ∗.

Finally, the map i∗ is closed because any continuous map from a compact space
to a Hausdorff space is closed. Therefore, i∗ is an embedding.

We denote the image of the map i∗ as

B := i∗(Ends(G)).

From the definition of the set U given in equation (4), we conclude that B ∩ U = ∅,
and B ⊔ U ⊂ Ends(S).
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Step 3. The embedding i : Cay(G,H) ↪→ S

We now describe the image of each vertex and edge of Cay(G,H) under the map i.
For each g ∈ G, let 0g denote the point in the affine copy Sg that corresponds

to the image of the point 0 (see equation (2)) in the decorated surface Sdec via the
affine diffeomorphism fg : Sdec → Sg. Then the surface S′

g described in equation (3)

contains the point 0g. Thus, we define the map h : V (Cay(G,H)) = G → S given
by

g 7→ 0g. (7)

On the other hand, for each j ∈ {1, . . . , J}, there is a simple polygonal path
βj : [0, 1] → S satisfying the following properties:

(1) The initial and terminal points of βj are 0Id and 0hj
, respectively. See Figure

4.

(2) For each i ̸= j ∈ {1, . . . , J}, the intersection βi([0, 1]) ∩ βj([0, 1]) =
{
0Id

}
.

Since the edge (Id, hj) of the Cayley graph Cay(G,H) is homeomorphic to the open
interval (0, 1), we can suppose, without loss of generality, that the curve βj is defined
from [Id, hj ] to S such that βj(Id) = 0Id and βj(hj) = 0hj

. Given that the Veech
group of the surface S is G, for each g ∈ G, there is an affine diffeomorphism
fg : S → S whose differential is dfg = g. Thus, we get the composition path

fg ◦ βj : [0, 1] → S, (8)

satisfying the following properties:

(1) The initial and terminal points of fg ◦ βj are 0g and 0ghj
, respectively.

(2) For each i ̸= j ∈ {1, . . . , J}, the intersection fg◦βi([0, 1])∩fg◦βj([0, 1]) =
{
0g

}
.

Similarly, since the edge (g, ghj) of the Cayley graph Cay(G,H) is homeomorphic
to the open interval (0, 1), we can suppose, without loss of generality, that the
composition path fg ◦ βj is defined from [g, ghj ] to S such that fg ◦ βj(g) = 0g and
fg ◦ βj(ghj) = 0ghj

.
From equations (7) and (8), we obtain the embedding

i : Cay(G,H) ↪→ S, (9)

such that i|G := h and i|[g,ghj ] := fg ◦ βj for each g ∈ G and j ∈ {1, . . . , J}.
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Figure 4: Image of βj

Step 4. The equality Ends(S) = B ⊔ U

We must prove that Ends(S) ⊂ B⊔U . Let [Un]n∈N be an end of S. Since S =
⋃

g∈G

S′
g,

for each n ∈ N, we consider the subset

G(n) =
{
g ∈ G : S′

g ∩ Un ̸= ∅
}
⊂ G,
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and define the open subset

Zn := Int

 ⋃
g∈G(n)

S′
g

 ⊂ S,

which has the following properties:

(1) Since Un is a non-empty, connected, and open subset of S with a compact
boundary, the set Zn is also a connected and open subset of S with a compact
boundary for each n ∈ N.

(2) As Un ⊃ Un+1, it follows that Zn ⊃ Zn+1 for each n ∈ N.

Using the definition of an end and the construction of Zn, it is easy to show
that the sequences (Zn)n∈N and (Un)n∈N define the same end of S. In other words,
[Un]n∈N = [Zn]n∈N. We shall now prove that the end [Zn]n∈N belongs to B ⊔ U . We
notice that one of the following cases must occur:

Case 1. There is N ∈ N such that G(N) is finite. Then there exists g ∈ G such
that for all m ≥ N we hold

Zm ⊂ S′
g.

This implies that the sequences (Zn)n∈N and (U(g)n)n∈N must be equivalent (see
equation (4)). Thus, [Un]n∈N ∈ U .

Case 2. Otherwise, for each n ∈ N, the subset G(n) ⊂ G is infinite. As the
embedding i described in equation (9) is a continuous map, the inverse image

Ẑn := i−1 (Zn ∩ i(Cay(G,H)))

is a connected and open subset of Cay(G,H) with a compact boundary for each
n ∈ N. Moreover, the sequence (Ẑn)n∈N defines an end of the group G. By the
construction of the sequence (Zn)n∈N of S, the embedding i∗ defined in (6) sends
the end [Ẑn]n∈N of G to the end [Zn]n∈N of S. This implies that [Zn]n∈N belongs to
B. Thus, we conclude that Ends(S) = B ⊔ U .

Step 5. The set B is closed and the set U is dense and open

Since U is an open subset of Ends(S), its complement Ends(S) \ U = B is a closed
subset of Ends(S). We shall prove that U is dense. Let [Zn]n∈N be an end of B. We
must show that this end belongs to the closure of U .

Let U be a non-empty, connected, and open subset of S with a compact boundary
such that the open subset U∗ ⊂ Ends(S) contains the end [Zn]n∈N. There exists
g̃ ∈ {g ∈ G : S′

g ∩ U ̸= ∅} such that S′
g̃ ⊂ U . This condition implies that the end

[U(g̃)n]n∈N of U belongs to U∗. Therefore, the end [Zn]n∈N is in the closure of U .
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