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Jasmina Ðord̄ević Faculty of Natural Sciences and Mathematics, University of Niš, Serbia
jasmina.djordjevic@pmf.edu.rs

Nenad Šuvak School of Applied Mathematics and Informatics, University of Osijek, Croatia
nsuvak@mathos.hr

School of Applied Mathematics and Informatics
J. J. Strossmayer University of Osijek, Croatia

SCALISM - Scaling in Stochastic Models (IP-2022-10-808)
Project funded by Croatian Science Foundation (2023-2027)

Abstract
The stochastic version of the SIRV (susceptible-infected-recovered-

vaccinated) model in the population of non-constant size and finite period
of immunity is considered. Among many parameters, the most important is
the contact rate, i.e. the average number of adequate contacts of an infective
person. It is expected that this parameter exhibits time-space clusters which is
reflected in interchanging periods of low and steady transmission and periods
of high and volatile transmission of the disease.

The stochastics in the SIRV model considered here comes from the noise
represented as the sum of the conditional Brownian motion and Poisson ran-
dom field, closely related to the corresponding time-changed Brownian mo-
tion and the time-changed Poisson random measure.

The existence and uniqueness of positive global solution of the stochastic
SIRV process is proven by classical techniques. Furthermore, persistence and
extinction of infection in population in long-run scenario are analyzed.

Deterministic SIRV model
Population is divided into four mutually exclusive compartments:
• S - susceptible individuals,

• I - infected individuals,

• R - recovered individuals,

• V - vaccinated individuals.

Figure 1. Scheme of the SIRV model with vaccination and temporary immunity.

• Total population size at time t ≥ 0:

N(t) = S(t) + I(t) +R(t) + V (t) < K.

• K ∈ R+ - the carrying capacity of the ecosystem.
• Deterministic SIRV model - system of ODEs:

dS(t) =
((

λ− κ− ρ− β
N(t)

I(t)
)
S(t) + αV (t) + γR(t)

)
dt

dI(t) =
(

β
N(t)

I(t) (S(t) + δV (t))− (κ1 + θ)I(t)
)
dt

dR(t) = (θI(t)− (κ + γ)R(t)) dt

dV (t) =
(
ρS(t)− (κ + α + δβ

N(t)
I(t))V (t)

)
dt.

Modeling of the contact rate β

• Modeling of the contact rate β - based on the time-changed Lévy
noise introduced in Di Nunno, G. & Sjursen, S. (2014).

• Model for contact rate β - driven by the random measure µ:

βdt 7→ βdt +

∫
R
σt(z)µ(dt, dz).

• Measure µ - the mixture of a conditional Brownian measure B
on [0, T ]×{0} and a centered doubly stochastic Poisson measure
H̃ on [0, T ]× R0, where R0 := R \ {0}.

Definition and properties of measure µ

• (Ω,F ,P) - a complete probability space.

• X = [0, T ]× R = ([0, T ]× {0}) ∪ ([0, T ]× R0), T > 0.

• BX - Borel σ-algebra on X .

• ∆ ∈ BX - a Borel subset of X .

• λ :=
(
λB, λH

)
- a two dimensional stochastic process such that

each component λl, l = B,H , satisfies:

(i) λlt ≥ 0 P-a.s. for all t ∈ [0, T ],

(ii) limh→0 P
(∣∣∣λlt+h − λlt

∣∣∣ ≥ ε
)

= 0 for all ε > 0 and almost all
t ∈ [0, T ],

(iii) E
[∫ T

0 λlt dt
]
< ∞.

• Random measure Λ on X:

Λ(∆) :=

∫ T

0
1{(t,0)∈∆}(t)λ

B
t dt +

∫ T

0

∫
R0

1∆(t, z)ν(dz)λ
H
t dt,

where ν is a deterministic, σ-finite measure on the Borel sets of R0
satisfying ∫

R0

z2ν(dz) < ∞.

• If ΛB(∆) is the restriction of Λ to [0, T ] × {0} and ΛH(∆) the re-
striction of Λ to [0, T ]× R0, then:

Λ(∆) = ΛB(∆ ∩ [0, T ]× {0}) + ΛH(∆ ∩ [0, T ]× R0).

Definition 1 (Di Nunno & Sjursen, 2014). The random measure µ on
the Borel subsets of X is defined by

µ(∆) := B(∆ ∩ [0, T ]× {0}) + H̃ (∆ ∩ [0, T ]× R0) , ∆ ⊆ X,

where

• conditionally on Λ, B is a Gaussian random measure,

• conditionally on Λ, H is a Poisson random measure,

• H̃ := H − ΛH is a measure given by

H̃(∆) := H(∆)− ΛH(∆), ∆ ⊂ [0, T ]× R0.

The model for contact rate β can be written in the following form:

βdt 7→ βdt + σt(0)dBt +

∫
R0

σt(z)H̃(dt, dz).

Random measures B and H are related to a specific form of time-
change for Brownian motion and pure jump Lévy process:

Bt := B([0, t]× {0}), ΛBt :=

∫ t

0
λBs ds, t ∈ [0, T ],

ηt :=

∫ t

0

∫
R0

zH̃(ds, dz), Λ̂Ht :=

∫ t

0
λHs ds, t ∈ [0, T ].

Theorem 1 (Serfozo, 1972). Let W = (Wt, t ∈ [0, T ]) be a Brownian
motion and N = (Nt, t ∈ [0, T ]) be a centered pure jump Lévy process
with Lévy measure ν. Assume that both W and N are independent of
Λ. Conditionally on Λ:

• B is a Gaussian random measure such that B (∆1) and B (∆2)
are independent whenever ∆1 ∩ ∆2 = ∅, if and only if for any
t ≥ 0

Bt
d
= WΛB

t
,

• η is a Poisson random measure, independent on B and such that
H (∆1) and H (∆2) are independent whenever ∆1∩∆2 = ∅, if and
only if for any t ≥ 0

ηt
d
= N

Λ̂H
t
.

Example model for contact rate β
Time-changed CIR jump diffusion
Example 1.

• λBt = λHt = at +

Nt∑
k=0

Xk - CPP with drift for a = 0.05,

Xt ∼ U(−1, 0.6) and (Nt, t ≥ 0) a PP with intensity λ = 2.
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Example 2.

• λBt - IG(α, δ) subordinator for α = 1, δ = 5

• dλHt = −θ(λHt − µ)dt + σdBt - for θ = 5, µ = 0, σ = 3
mean-reverting Ornstein-Uhlenbeck process.
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SIRV model driven by random measure µ

dS(t) =

(
(λ− ρ− κ)S(t)− β

N(t)
S(t)I(t) + αV (t) + γR(t)

)
dt

−
∫
R
σt(z)

S(t)

N(t)
I(t)µ(dt, dz)

dI(t) =

(
β

N(t)
(S(t) + δV (t))− (κ1 + θ)

)
I(t) dt

+

∫
R
σt(z) (S(t) + δV (t))

I(t)

N(t)
µ(dt, dz)

dR(t) = (θI(t)− (κ + γ)R(t)) dt

dV (t) =

(
ρS(t)− (κ + α)V (t)− δ

β

N(t)
V (t)I(t)

)
dt

−
∫
R
σt(z)δ

V (t)

N(t)
I(t)µ(dt, dz)

Existence of unique positive global solution
Theorem 2. For any initial value (S(0), I(0), R(0), V (0)) ∈ ⟨0, K⟩4
there exist a unique positive global solution

((S(t), I(t), R(t), V (t)) , t ≥ 0)

of the SIRV SDE system that P-a.s. remains in ⟨0, K⟩4.

Extinction theorem
Theorem 3. If

lim sup
t→∞

1

t

∫ t

0

ds

(λBs σs(0))
2
<

2(κ1 + θ)

K2
, P− a.s.,

lim
t→∞

t∫
0

1

(1 + s)2

∫
R

(
λBs 1{0}(z) + λHs 1R0

(z)
)
ν(dz)ds < ∞,

then for any initial value (S(0), I(0), R(0), V (0)) ∈ ⟨0, K⟩4

I(t) → 0 P− a.s. as t → ∞,

R(t) → 0 P− a.s. as t → ∞,

while
lim sup
t→∞

(S(t) +V(t)) = K P− a.s.

Persistence theorem
The system is said to be persistent in the mean if

lim inf
t→∞

[I(t)] := lim inf
t→∞

1

t

∫ t

0
I(s)ds > 0, P− a.s.

Theorem 4. For any initial value (S(0), I(0), R(0), V (0)) ∈ ⟨0, K⟩4

lim inf
t→∞

[I(t)] > 0 P− a.s.

if the following conditions are satisfied:

• λ > ρ,

• there exists a positive constant β̃ such that lim inf
t→∞

β
N(t)

≥ β̃

• lim sup
t→∞

1
t

∫ t
0 σ

2
s(0)(λ

B
s )

2ds ≤ 2β̃(λ+ρ(δ−1))S+α(1−δ)V )
Cκ(δ+1)2

,

where V is such that V (t) ≥ V for all t ≥ 0 and
C := κ1 + θ − V β̃δ(1− δ)− θγ

κ+γ > 0,

• lim
t→∞

t∫
0

1
(1+s)2

∫
R

(
λBs 1{0}(z) + λHs 1R0

(z)
)
ν(dz)ds < ∞.

Forthcoming research
• Simulation of the stochastic SIRV system in extinction and persistence scenarios, regarding dif-

ferent time-changed models for contact rate β driven by random measure µ.

• Recovering the time-dependent transmission rate from infection data via solution of an inverse
problem.
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