Skewed Sub-Gaussian Multivariate Distribution

Teodosi Geninski¹, Ivan Mitov², Zari Rachev³

¹Faculty of Mathematics and Informatics, Sofia University, Bulgaria ²FinAnalytica Inc. ³Stony Brook University

Abstract

Normal variance mixture models are used as an extension of the Gaussian framework to allow heavier tails and add flexibility to the Wiener processes time concept. The Sub-Gaussian model is a typical representative of this class. It is a parametric sub-class of the multivariate α -stable distribution which is an elliptical, infinitely divisible and has a tractable representation of its characteristic function. It possesses heavy tails but it is also a symmetric distribution.

To overcome the latter drawback a ρ -weighted, univariate, α -stable skewness component is introduced. The domain of ρ and its connection to the skewness and the dependence structure are explored as well as some of the border cases. By varying ρ from 0 to 1 the distribution transforms from a regular Sub-Gaussian to multivariate α -stable with independent and not necessary symmetric components.

Application to a real-world financial assets data is provided together with fitting techniques and comparison of the Sub-Gaussian and the Skewed Sub-Gaussian distribution.

Keywords: Variance mixture, Multivariate stable models, Sub-Gaussian model, Asymmetric distributions

AMS subject classifications: 60E07, 62P05, 62E17

Acknowledgements: This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0052 (2012/2014).

Bibliography

- [1] Rachev S. and Mittnik S., (2000), Stable Paretian Models in Finance, Wiley
- [2] Samorodnitsky G., Taqqu M. S., (1994), Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance, Chapman & Hall.