The zero area Brownian bridge

Maik Görgens¹

¹Department of Mathematics, Uppsala University, P.O.Box 480, 751 06 Uppsala, Sweden

Abstract

We consider the Brownian motion W on the interval [0, 1]. The Brownian bridge B arises from the Brownian motion by pinning W_1 down to 0, i.e., the Brownian bridge arises by conditioning the Brownian motion to fulfill $W_1 = 0$. We condition the Brownian bridge further by requiring $\int_0^1 B_s ds = 0$. We call the resulting Gaussian process on [0, 1] zero area Brownian bridge and denote it by M. We will study properties of M and give anticipative as well as non-anticipative representations. Our main tool to access the zero area Brownian bridge is to consider the associated operator $u: L_2([0,1]) \to C([0,1])$ of the Brownian motion, where u is given by

$$(uf)(s) = \int_0^s f(x)dx, \qquad f \in L_2([0,1]).$$

Then (a version of) the Brownian motion is given by

$$W_s = \sum_{i=0}^{\infty} \xi_i(ue_i)(s),$$

where $(e_i)_i$ is an orthonormal basis in $L_2([0, 1])$ and $(\xi_i)_i$ is a series of independent standard normal random variables (cf. [2]). The zero area Brownian bridge is the Gaussian process associated to the operator $v : H \to C([0, 1])$, where v is the restriction of u to a suitable subspace $H \subset L_2([0, 1])$.

Keywords: Gaussian processes, Conditioning, Brownian bridge, Series expansions **AMS subject classifications:** 60G15, 60H10, 60J65

Bibliography

- Görgens, M. (2013) Conditioning of Gaussian processes and a zero area Brownian bridge. Preprint, arXiv:1302.4186.
- [2] Mörters, P. and Peres, Y. (2010). Brownian motion, Cambridge University Press.