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Abstract

This study focuses on approximating the posterior distribution of mixture weights
(θ) given some data (x) using Variational Bayes (VB) methods [1]. Standard VB
implementation [4] for this problem approximates the joint posterior distribution
p(θ, z|x) of parameters and latent variables (z). It is demonstrated via simulation
that this approach leads to variance underestimation. For this reason a new vari-
ational scheme is developed by integrating out the latent variables and targeting
the marginal posterior distribution p(θ|x). The new approximation belongs to the
richer family of Generalized Dirichlet distributions [8], while a stochastic approxi-
mation algorithm [6] performs the optimization in the corresponding spaces arising
from two different parameterizations. Moreover, it is proven that the new solution
leads to a better marginal log-likelihood bound compared to the former.
The method is applied to transcript expression estimation using high throughput
sequencing of RNA (RNA-seq) technology. Mixture models are a natural way to
deal with such problems, and Gibbs sampling has already been applied [3]. The ap-
plication of Variational methods to these datasets is novel and leads to encouraging
results. Finally, the variational solution is exploited in order to improve Markov
Chain Monte Carlo (MCMC) sampling with the Delayed Rejection algorithm [7].
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