Directed Random Graphs and Convergence to the Tracy-Widom Distribution

Takis Konstantopoulos ${ }^{1}$ and Katja Trinajstić ${ }^{1}$
${ }^{1}$ Department of Mathematics, Uppsala University, Sweden

Abstract

We consider a directed random graph on the 2-dimensional integer lattice, placing independently, with probability p, a directed edge between any pair of distinct vertices $\left(i_{1}, i_{2}\right)$ and (j_{1}, j_{2}), such that $i_{1} \leq j_{1}$ and $i_{2} \leq j_{2}$. Let $L_{n, m}$ denote the maximum length of all paths contained in an $n \times m$ rectangle. The asymptotic distribution for a centered/scaled version of $L_{n, m}$, for fixed m, as $n \rightarrow \infty$, was derived in [2]. Here, we address the problem of finding the limit when both n and m tend to infinity, so that $m \sim n^{a}$. We make a sequence of transformations in order to exhibit a resemblance of our model to a last passage percolation model. This requires the use of suitably defined regenerative points (called skeleton points), together with a number of pathwise and probabilistic bounds. Making use of a Komlós-Major-Tusnády coupling, as in [1], with a last-passage Brownian percolation model, we are able to prove that, for $a<3 / 14$, the asymptotic distribution is the Tracy-Widom distribution.

Keywords: Random graph, Last passage percolation, Strong approximation, Tracy-Widom distribution
AMS subject classifications: $05 \mathrm{C} 80,60 \mathrm{~F} 17,60 \mathrm{~K} 35,06 \mathrm{~A} 06$

Bibliography

[1] Bodineau, T. and Martin, J. (2005). A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10, 105-112.
[2] Denisov, D., Foss, S. and Konstantopoulos, T. (2012). Limit theorems for a random directed slab graph. Ann. Appl. Probab. 22, 702-733.

