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Preface

European Young Statisticians Meetings are organized every two years under the auspices of the European
Regional Committee of the Bernoulli Society for Mathematical Statistics and Probability. The aim is to pro-
vide a scientific forum for the next generation of European researchers in probability theory and statistics.
It represents an excellent opportunity to promote new collaborations and international cooperation. Partici-
pants are less than 30 years old or have 2 to 8 years of research experience, and are invited on the basis of
their scientific achievements, in a uniformly distributed way in Europe (at most 2 participants per country).

The 18th European Young Statisticians Meeting (18th EYSM) was held at the Department of Mathematics,
J.J. Strossmayer University of Osijek, Croatia, 26− 30 August 2013.

The conference was attended by 45 participants from 25 European countries. The 45 talks were organized
in 14 sessions covering 11 different topics (there were no parallel sessions):

1. Statistical inference – estimation

2. Statistical inference – testing procedures

3. Theory of continuous time stochastic processes

4. Inequalities and stochastic ordering

5. Diagnostics and decision theory

6. Optimal design

7. Statistical applications – biology and medicine

8. Statistical applications – economics and insurance

9 Statistical applications – image analysis

10. Statistical applications – engineering, industry and seismology

11. Other topics in statistics and probability.

Five eminent scientist gave keynote lectures:

1. Bojan Basrak, Department of Mathematics, University of Zagreb, Croatia - On dependent regularly
varying observations

2. Nikolai N. Leonenko, School of Mathematics, Cardiff University, United Kingdom - Multifractal
products of geometric stationary processes
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3. Jürgen Pilz, Alpen-Adria Universität Klagenfurt, Austria - Some advances in Bayesian spatial predic-
tion and sampling design

4. Johan Segers, Institut de statistique, biostatistique et sciences actuarielles, Université catholique de
Louvain, Belgium - Semiparametric Gaussian copula models: Geometry and efficient rank-based
estimation

5. Michael Sørensen, Department of Mathematical Sciences, University of Copenhagen, Denmark -
Statistics for stochastic differential equations - two approaches.

We would like to express our gratitude to the members of the International Organizing Committee for se-
lecting the high-level young scientists for attending this conference, as well as to the reviewers of the papers
published in the conference proceedings. We would like to thank to our colleagues from the Department of
Mathematics, J.J. Strossmayer University of Osijek, for all their efforts and help. Furthermore, we would
like to thank all the sponsors that helped in organizing the 18th EYSM, particularly to the Bernoulli Society
for Mathematical Statistics and Probability and to the Department of Mathematics, J.J. Strossmayer Univer-
sity of Osijek. Last, but not least, we thank all the participants for providing an excellent scientific program
and a lot of fun during the social events.

It is our pleasure to announce that the 19th European Young Statisticians Meeting will take place in Prague,
the capital of Czech Republic. We wish them all the luck!

March, 2014

Nenad Šuvak

on behalf of the Local Organizing Committee
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Multifractal products of geometric stationary processes

Nikolai N. Leonenko∗

School of Mathematics, Cardiff University, United Kingdom

Abstract

This is joint work with D. Denisov (Cardiff University).
Multifractal and monofractal models have been used in many applications in hydrodynamic turbulence,
finance, genomics, computer network traffic, etc. (see, for example, [7]). There are many ways to construct
random multifractal models ranging from simple binomial cascades to measures generated by branching
processes and the compound Poisson process ([2] - [7]).
Anh, Leonenko and Shieh ([1]-[3]) and Leonenko and Shieh [8] considered multifractal products of stochas-
tic processes as defined in [9], but they provide a new interpretation of the conditions on the characteristics
of geometric stationary processes in terms of the moment generating functions.
We investigate the properties of multifractal products of geometric Gaussian processes with possible long-
range dependence and geometric Ornsteinf-Uhlenbeck processes driven by Lévy motion and their finite and
infinite superpositions. We present the general conditions for the Lq convergence of cumulative processes
to the limiting processes and investigate their q-th order moments and Rényi functions, which are nonlinear,
hence displaying the multifractality of the processes as constructed. We also establish the corresponding
scenarios for the limiting processes, such as log-normal, log-gamma, log-tempered stable or log-normal
tempered stable scenarios.

Bibliography

[1] Anh, V. V., Leonenko, N. N. and Shieh, N.-R. (2008). Multifractality of products of geometric Ornstein-
Uhlenbeck-type processes. Adv. in Appl. Probab. 40 1129–1156.

[2] Anh, V. V., Leonenko, N. N. and Shieh, N.-R. (2009). Multifractal scaling of products of birth-death
processes. Bernoulli 15 508–531.

[3] Anh, V. V., Leonenko, N. N., Shieh, N.-R. and Taufer, E. (2010). Simulation of multifractal products of
Ornstein-Uhlenbeck type processes. Nonlinearity 23 823–843.

[4] Bacry, E. and Muzy, J.F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236
(2003), 449–475.

[5] Barndorf-Nilsen, O.E. and Shmigel, Yu (2004). Spatio-temporal modeling based on Lévy processes,
and its applications to turbulence. (Russian) Uspekhi Mat. Nauk 59, 63–90; translation in Russian Math.
Surveys 59, 65–90.

[6] Denisov, D. and Leonenko, N. (2011). Multifractality of products of geometric stationary processes.
Submitted, published in arxiv.org/abs/1110.2428.

[7] Doukhan, P., Oppenheim, G. and Taqqu, M.S.(2003). Theory and Applications of Long-range Depen-
dence. Birkhäuser Boston.

[8] Leonenko, N.N and Shieh N.-R. (2013). Rényi function for multifractal random fields. Fractals, in press.
[9] Mannersalo, P., Norris, I. and Riedi, R. (2002). Multifractal products of stochastic processes: construc-

tion and some basic properties. Adv. Appl. Prob., 34, 888–903.

∗e-mail: LeonenkoN@Cardiff.ac.uk
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Statistics for stochastic differential equations — two approaches

Michael Sørensen∗

Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract

For discrete-time observations of the solution to a stochastic differential equation, there is usually no ex-
plicit expression for the likelihood function, which is a product of transition densities. Therefore, the like-
lihood function must be approximated. A brief review will be given of a broad spectrum of approximation
methods. Two approaches will be presented in detail. Martingale estimating functions are a simple way
of approximating likelihood inference that provides estimators which are easy to calculate. These estima-
tors are generally consistent, and if the estimating function is chosen optimally, they are efficient in a high
frequency asymptotic scenario, where the sampling frequency goes to infinity. At low sampling frequen-
cies, efficient estimators can be obtained by more accurate approximations to likelihood inference based on
simulation methods, including both the stochastic EM-algorithm and Bayesian approaches like the Gibbs
sampler. These methods are much more computer intensive. Simulation of diffusion bridges plays a central
role. Therefore this highly non-trivial problem has been investigated actively over the last 10 years. A simple
method for diffusion bridge simulation will be presented and applied to likelihood inference for stochastic
differential equations.

∗e-mail: michael@math.ku.dk
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Some advances in Bayesian spatial prediction and sampling design

Jürgen Pilz∗

Alpen-Adria Universitaet Klagenfurt, Austria

Abstract

In my talk, I will report on recent work with my colleagues G. Spoeck and H. Kazianka in the area of
Bayesian spatial prediction and design [1]-[4].

The Bayesian approach not only offers more flexibility in modeling but also allows us to deal with uncertain
distribution parameters, and it leads to more realistic estimates for the predicted variances. We report on
some experiences gained with our approach during a European project on ”Automatic mapping of radioac-
tivity in case of emergency”.
We then go on and apply copula methodology to Bayesian spatial modeling and derive predictive distri-
butions. Moreover, I report on recent results on finding objective priors for the crucial nugget and range
parameters of the widely used Matern-family of covariance functions.
Further on, I briefly consider the challenges in stepping from the purely spatial setting to spatio-temporal
modeling and prediction.

Finally, I will consider the problem of choosing an ”optimal” spatial design, i.e. finding an optimal spatial
configuration of the observation sites minimizing the total mean squared error of prediction over an area
of interest. Using Bessel-sine/cosine- expansions for random fields we arrive at a design problem which
is equivalent to finding optimal Bayes designs for linear regression models with uncorrelated errors, for
which powerful methods and algorithms from convex optimization theory are available. I will also indicate
problems and challenges with optimal Bayesian design when dealing with more complex design criteria
such as minimizing the averaged expected lengths of predictive intervals over the area of interest.

Bibliography

[1] H. Kazianka and J. Pilz (2011). Bayesian spatial modeling and interpolation using copulas. Computers
& Geosciences. 37(3): 310-319.

[2] H. Kazianka and J. Pilz (2012). Objective Bayesian analysis of spatial data taking account of nugget and
range parameters. The Canadian Journal of Statistics. 40(2): 304-327.

[3] J. Pilz, H. Kazianka and G. Spoeck (2012). Some advances in Bayesian spatial prediction and sampling
design. Spatial Statistics. 1: 65-81.

[4] G. Spoeck and J. Pilz (2013). Spatial sampling design based on spectral approximations of the error pro-
cess. In: Spatio-temporal design: Advances in Efficient Data Acquisition (W.G. Mueller and J. Mateu,
Eds.), Wiley, New York, 72-102

∗e-mail: Juergen.Pilz@uni-klu.ac.at
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Semiparametric Gaussian copula models: Geometry and efficient
rank-based estimation

Johan Segers∗1, Ramon van den Akker2 and Bas Werker2

1Université catholique de Louvain, Belgium
2Tilburg University, The Netherlands

Abstract

For multivariate Gaussian copula models with unknown margins and general correlation structures, a simple,
rank-based and semiparametrically efficient estimator is proposed. An algebraic representation of relevant
subspaces of the tangent space is constructed that allows to easily study questions of adaptivity with respect
to the unknown marginal distributions and of efficiency of the pseudo-likelihood estimator and the normal-
scores rank correlation coefficient. Some well-known examples are treated explicitly: circular correlation
matrices, factor models, and Toeplitz matrices, special cases being exchangeable structures, moving aver-
age models and autoregressive models. For constructed examples, the asymptotic relative efficiency of the
pseudo-likelihood estimator can be as low as 20 percent. For finite samples, these findings are confirmed by
Monte Carlo simulations.

On dependent regularly varying observations

Bojan Basrak§

Department of Mathematics, University of Zagreb, Croatia

Abstract

It is well known that the extremal behavior of stationary sequences can be nicely captured using the language
of point processes. We explain how this theory extends from iid to dependent sequences as long as this
dependence disappears in time. The theory turns out to be especially elegant when applied to stationary
regularly varying sequences, which we discuss in detail.

In particular, the dependence structure of extremes for such sequences can be described using the concept
of the tail process. By application of the point processes theory, this leads to various asymptotic results for
extremes and sums of such sequences, including some nonstandard functional limit theorems.

∗e-mail: johan.segers@uclouvain.be
§e-mail: bbasrak@math.hr
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Robust multivariate process control of multi-way data with root cause
analysis

Peter Scheibelhofer∗1,2 Günter Hayderer2 and Ernst Stadlober1

1Graz University of Technology, Austria
2ams AG, Unterpremstätten, Austria

Abstract
The evaluation of the manufacturing process conditions is a crucial challenge in modern semiconductor
fabrication. With growing complexity large numbers of process variables are recorded during equipment
operations of each process step. To monitor these processes, traditional fault detection and classification
methods were implemented, but they are mostly univariate. Multivariate techniques such as Principal Com-
ponent Analysis and Hotelling’s T 2 are capable of advanced process control but they are mainly based on
statistically calculated indicators such as means or standard deviations of one wafer over its process time.
Thereby, information of the time variation of the variables is omitted. In this work, we present a general-
ized methodology for multivariate process control that considers the whole recorded information of a wafer
by using multi-way principal component analysis (MPCA). The use of Hotelling’s T 2 statistics makes out-
comes easy to monitor as it can be summarized into one control chart. By grouping similar variables into
reasonable functional groups and by applying decomposition methods for the T 2 signal, a root cause analy-
sis is possible. Furthermore, special attention is paid on the robustness of the MPCA and T 2 procedure as an
analysis independent of frequently observed outliers is crucial. In a case study of production data from the
Austrian semiconductor manufacturer ams AG an observed production machine error can be detected and
its root cause can be tracked down successfully.

Keywords: fault detection, multivariate process control, multi-way principal component analysis, robust
statistics
AMS subject classifications: 62P30

1 Introduction
Modern semiconductor fabrication consists of a series of highly complex manufacturing steps resulting in
a final product with well-defined electrical properties. To achieve this goal, each step of the batch process
has to be monitored adequately. During the processing of one batch (wafer) at a given process stage data
information for every observed status variable is typically recorded by sensors with a fixed frequency, e.g.
one data point per second. Thus, the total recorded data information of a wafer over its process time can
be arranged in a multi-way array with dimension I × J × K which holds the information of I wafers on
J variables at K observed time points. A suitable method for handling such multi-way data is multi-way
principal component analysis (MPCA, see [11]). The result of an MPCA decomposition of a multi-way
array is a series of principal components consisting of score vectors of dimension 1× I , loading matrices of
dimension J ×K and an I × J ×K dimensional error array. See figure 1 for an illustration.

∗Corresponding author, e-mail: peter.scheibelhofer@ams.com



18TH EUROPEAN YOUNG STATISTICIANS MEETING 10

Figure 1: Arrangement and decomposition of a three-way array as a result of MPCA.

As for ordinary principal component analysis (PCA), every wafer gets a unique score value for each principal
component based on its respective variation over the process time. Therefore the monitoring of these scores
is of interest for process control (see [6]). In order to ensure a reasonable root cause analysis, in a first step
the observed variables are arranged in functional variable groups according to their physical relationship.
This grouping is achieved with the help of process experts. Then, in a second step an MPCA analysis is
performed for each functional group seperately and all of the resulting scores are monitored by implementing
Hotelling’s T 2 statistics (see [3]) for phase 1 and 2 observations (see [5]). For suspect wafers this approach
allows a meaningful application of the Mason-Young-Tracy (MYT) decomposition of the T 2 signal (see [5])
for out-of-control wafers. Thereby, a given problem can be tracked down to a single functional group or a
relationship between groups.

2 Robustness of the approach
In order to get robust MPCA results with score vectors and loading matrices not influenced by outlying ob-
servations several approaches are possible. Engelen and Hubert (see [1]) proposed an approach for robustly
exploring a multi-way array using a parallel factor analysis (PARAFAC) model. Their method is based on
the ROBPCA algorithm for robust principal component analysis by Hubert et al. (see [4]). Another possi-
bility to decompose a three-way array is to use the approach by Nomikos and MacGregor (see [6]) based on
unfolding the given three-way array to a large matrix of dimension I × JK and then performing ordinary
PCA via the nonlinear iterative partial least squares (NIPALS) algorithm. Based on the ideas of Engelen and
Hubert, a robustification of the Nomikos and MacGregor approach can be achieved by also using ROBPCA
as a starting point instead of ordinary PCA to calculate scores and loadings. This way, one is able to avoid
problems of PARAFAC models with degenerate solutions where the algorithm has difficulties in correctly
fitting a model (see e.g. [9], section 5.4).
Furthermore, the well-known Hotelling’s T 2 statistics, which is applied to the score vectors, can be robus-
tified by using robust estimates of the mean and variance-covariance structure of the given data (see [10]).
Here, we use the minimum covariance determinant (MCD) method by Rousseeuw and van Driessen (see
[8]).

3 Case Study
We studied an error of the magnetic field in a plasma etch tool used during wafer processing at Austrian
semiconductor manufacturer ams AG. The failure caused a severe decrease in the etch rate of the equipment
(see [2]). Classical univariate analysis did not show any severe out-of-control alarms. In the affected month
June 2011 the proposed approach was applied to data from about 900 wafers. All computation was done
using R (see [7]). About 430 wafers were used as historical phase 1 data set to characterize the in-control
situation by using the robust MCD estimators. The resulting T 2 control chart of all observed wafers clearly
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shows significant out-of-control signals for wafers affected by the error (around wafer 500) as visualized in
figure 2.
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Figure 2: Values of Hotelling’s T 2 statistics for about 1000 analyzed wafers.

The respective MYT decomposition of the T 2 signal correctly tracks down the root cause of the problem
mainly to the RF functional variable group of the etch tool. The root cause was also confirmed by process
engineers. One possible resulting error profile from the T 2 signal decomposition is shown in figure 3. Only
wafers affected by the magnetic field error show this particular error fingerprint.
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Figure 3: MYT decomposition profile of Hotelling’s T 2 signal exemplarily for one wafer affected by the
magnetic field error.
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Abstract
Functional Magnetic Reasonance Imaging (fMRI) plays an important role in pre-surgical planning for pa-
tients with resectable brain lesions such as tumors. With appropriately designed tasks, the results of fMRI
studies can guide resection, thereby preserving vital brain tissue.
The mass univariate approach to fMRI data analysis consists of performing a statistical test in each voxel,
which is used to classify voxels either as active or inactive, i.e. related, or not, to the task of interest. In
cognitive neuroscience, the focus is on controlling the rate of false positives while accounting for the severe
multiple testing problem of searching the brain for activations. However, stringent control of false positives
is accompanied by a risk of false negatives which can be detrimental, particularly in clinical settings where
false negatives may lead to surgical resection of vital brain tissue. Consequently, for clinical applications we
argue for a testing procedure with a stronger focus on preventing false negatives.
We present a thresholding procedure that incorporates information on false positives and false negatives. We
combine 2 measures of significance for each voxel: a classical p-value which reflects evidence against the
null hypothesis of no activation and an alternative p-value which reflects evidence against activation of a pre-
specified size. This results in a layered statistical map for the brain. One layer marks voxels exhibiting strong
evidence against the traditional null hypothesis, while a second layer marks voxels where activation cannot
be confidently excluded. The third layer marks voxels where the presence of activation can be rejected.

Keywords: fMRI, power, false negative errors, multiple testing, pre-surgical fMRI
AMS subject classifications: 62P07

1 Introduction
A common treatment for patients suffering from a brain tumor is surgical resection of the tumor. In order to
minimize the risk of resecting brain tissue involved in essential brain functions, such as speech or language
comprehension, these patients often undergo pre-surgical functional Magnetic Resonance Imaging (fMRI).
This is a technique that shows subject-specific neural activity changes in the brain. The resulting fMRI
data can assist the surgeon in performing the tumor resection while preserving the brain tissue involved
in important cognitive and sensorimotor functions, and can even be used to predict the outcome of post-
operative cognitive functioning [4].
For an fMRI data analysis, the brain is divided in more than 100,000 voxels. The mass univariate approach
to fMRI data analysis consists of performing a statistical test in each voxel. In cognitive neuroscience, this
technique is used to link neurological and neuropsychological functions with their respective location in the
brain, supporting different theories of brain function. To be confident that a brain area is associated with a
task it is essential to account for the multiple testing problem. However, multiple testing corrections result in
a more stringent control of the null hypothesis of no activation, and consequently, the probability of a false
∗Corresponding author, e-mail: Joke.Durnez@UGent.be
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negative increases [5]. However, the scientific discipline generally deems stringent control of false positives
necessary, accepting the concomitant sacrifices in sensitivity.
In a clinical setting such as pre-surgical fMRI however, a loss in power means true activation is not discov-
ered, and this might result in the resection of vital brain tissue. Inversely, false positives have a less negative
impact on the surgical result [3]. The goal of classical hypothesis testing is to prevent the null hypothesis
from being rejected, by only considering voxels as being active when enough evidence against the null of
no activation is found. This asymmetrical way of penalising errors in statistical inference is undesirable in
this context [4], and instead the focus should be on protecting the alternative hypothesis: one only wants to
exclude activation when enough evidence against activation is found. We therefore present a new hypothesis
thresholding procedure that incorporates both information on false positives and false negatives and thus is
ideally suited for pre-surgical fMRI.

2 Methods

2.1 Measures of evidence against the null and alternative

At each voxel i, i = 1, . . . , I , we assume that a linear model is fit and produces ∆̂i, an unbiased estimate of
the BOLD effect of interest ∆i, and an estimate of the standard deviation of ∆̂i, its “standard error” SE(∆̂i).
We henceforth suppress the voxel subscript unless needed for clarity.

The null and the alternative hypothesis The null hypothesis H0 : ∆ = 0 states that the true effect
magnitude is zero, and an underlying difference between conditions ∆ is equal to 0. Classical statistical
inference involves computing a test statistic, converted to a p-value, that measures the evidence against this
null hypothesis. The decision procedure to rejectH0 is calibrated to maintain the Type I error at α. However,
failing to reject H0 does not allow one to conclude that H0 is true.
Our procedure considers an “alternative hypothesis” p-value, p1, that measures the evidence against Ha :
∆ = ∆1, the non-zero effect magnitude expected under activation. fMRI-studies are often preceeded with
power analyses for sample size calculations which also require the specification of ∆1. In literature, different
approaches to choose a meaningful ∆1 have been presented [1, 7]. Alternatively, in pre-surgical fMRI, one
can estimate ∆1 based on data in previous patients.

Measures of significance At a given voxel we have a test statistic T with observed value t, We assume
that T has a known distribution under H0 (e.g. Student’s t with given degrees-of-freedom, or Gaussian), so
that we can compute the classical p-value

p0 = P (T ≥ t|H0). (1)

That is, p0 quantifies the evidence against the null hypothesis H0 of no task-related activation.
In a symmetrical fashion, the alternative p-value is defined as in Moerkerke et al. [6]:

p1 = P (T ≤ t|Ha). (2)

Correspondingly, p1 measures the evidence against Ha, and corresponds to the classical p-value for testing
a “null” Ha versus “alternative” H0. In generally, as the evidence in favor of Ha grows, p0 becomes smaller
and p1 becomes larger.
In order to compute p1 we need the distribution of T under Ha, which requires specification of ∆1. How-
ever, we don’t expect a single magnitude of true activation, but a distribution of different true values [1].
Therefore, in a Bayesian spirit, we specify a distribution of likely values of ∆1 instead of fixed value:

∆1 ∼ N
(
µ, τ2

)
(3)
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Figure 1: The distributions of an effect under H0 and Ha are displayed for an observed effect of t = 1.5,
SE(∆̂) = 1, ∆1 = 2 and τ = 1. Note that Ha has a wider distribution than H0 due to the uncertainty on
∆1.

where µ is the expected magnitude of effect under true activation while acknowledging variation among
voxels, specifically Gaussian variation with standard deviation τ .
Assuming that T also follows a Gaussian distribution, it has the following distribution under Ha at voxel i:

Ti ∼ N
(

µ

SE(∆̂i)
,

SE(∆̂i)2 + τ2

SE(∆̂i)2
,

)
(4)

where voxel subscripts are used to emphasize that the values of µ and τ are fixed for the entire brain, and
based on prior knowledge or other experiments, while SE(∆̂i) is from each individual voxel. With this
distribution we can compute p1 at each voxel. An illustration of both measures of significance can be seen in
Figure 1. As the alternative distribution depends the voxel-specific standard error, the distance between the
null and alternative distributions will be voxel-specific. In particular a large standard error results in a large
overlap between H0 and Ha, while small standard errors lead to a large distance and little overlap between
H0 and Ha.

2.2 Combining measures of significance
In classical null hypothesis significance testing, a threshold α on p0 can be translated into a threshold tα for
the test statistic t. In parallel, a threshold β on p1 can be translated into a test statistic threshold tβ . While
tα is determined by α (and degrees-of-freedom if not using a Gaussian), tβ further depends on β, µ, τ and
SE(∆̂i). Thus tβ varies over the brain depending on the (estimated) voxelspecific standard error.

3 Results
We consider data from a patient suffering from a left prefrontal brain tumor. The study design was a box-car
design, where the patient was asked to alternate between recitation of tongue-twisters and quiescence. For
the application to mass univariate linear modeling, the data were analyzed with FEAT in FSL 4.1 [8].
We derive the expected effect magnitude for ∆1 and the variability of that effect τ from 5 patients who
underwent the same fMRI paradigm. We threshold the image of each individual using an FDR-control at
0.05 and look at the average percent BOLD change units in each individual. We specify the expected effect
magnitude for ∆1 of µ = 0.73 percent BOLD change units, and variability of that effect as τ =

√
τ̂2 = 0.21

percent BOLD change. These results are consistent with others in the literature (see e.g. Desmond and
Glover, Figure 7A [1])
Results are shown in Figure 2 with thresholds α = 0.001 and β = 0.20. In other words, we specified
a p0 threshold for declaring an activation when there is none at 1-in-1000; and we set the p1 threshold
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Alternative thresholding approach applied to classical univariate testing
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Figure 2: Sagittal slice of “layered” activation inference overlaying grayscale T2* reference image, threshold
values of α = 0.001 and β = 0.20. Red areas show areas of high confidence of activation (H0 rejected,
Ha not rejected), while yellow areas show areas where activation cannot be ruled out (neither H0 nor Ha

rejected); uncolored areas have high confidence of no activation (H0 not rejected, Ha rejected), while the
few orange voxels indicate voxels with significant but surprisingly small BOLD response magnitude (H0

and Ha rejected).

for declaring the absence of activation when in fact the specified activation magnitude is present at 1-in-
5. The red and the (scant) orange voxels show where H0 can be confidently rejected, and, if presurgical
planning was done only on the basis of classical null hypothesis testing, all other tissue would be regarded
as “safe”. Considering information on the alternative, we have the red voxels where, specifically, H0 can be
rejected and Ha cannot be rejected; i.e. the red voxels are incompatible with the null and compatible with
the alternative, and thus are strong evidence for the effect. The yellow areas are areas are where neither
H0 nor Ha can be rejected; here the data is compatible with both the null and alternative, and suggest a
lack of confidence in ruling out activation. Finally, for voxels with no coloration, the H0 cannot be rejected
but Ha can; the data are compatible with the null and incompatible with the alternative, and thus have
good evidence for a lack of activation and suggest that these brain regions can be safely resected. This
shows the key strength of the procedure: Among voxels traditionally classified as “nonactive”, i.e. those
with insufficiently small p0’s, it distinguishes between voxels where there is compelling evidence for non-
activation (not colored) and those voxels where we cannot rule out the possibility of activation (yellow).
The orange voxels represent voxels for which the observed effect size is between the null hypothesis of
no activation and the expected effect size. In these voxels, both the null and the alternative hypothesis are
rejected which corresponds to very low residual noise in the GLM.

4 Discussion
Statistical thresholding in the context of multiple tests is generally driven by the need to limit false positives.
These stringent testing procedures in fMRI research leads to an abundance of false negatives [5] and are
therefore less useful in the context of pre-surgical fMRI where a false negative can have dire consequences.
While many attempts have been made to propose more liberal testing criteria for example by controlling
the FDR instead of the FWER [2], the focus is still on protecting the type I error rate. The unilateral focus
on preventing false positives leads to a bias towards large obvious effects and against complex cognitive
and affective effects [5]. We therefore propose a measure that quantifies the evidence against the alternative
hypothesis as introduced in [6]. We use this quantity p1 in addition with the classical p0-value in a procedure
that results in a thresholding procedure with multiple layers of significance. One layer consists of voxels
exhibiting strong evidence of activation (red, in Fig. 2), while a another layer shows voxels with ambiguous
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evidence (yellow and orange), and a final layer then consists of voxels for which the presence of activation
can be confidently rejected (an absense of overlaid statistic values). Thereby we offer a more symmetrical
interest towards both false positives and false negatives.
This procedure has been developed in light of pre-surgical fMRI, as false negatives can have harmful conse-
quences for the patient. However the lack of power is omnipresent in fMRI-analyses [5] and therefore this
procedure is also very useful in all branches of cognitive neuroscience. In this procedure, control of false
positives remains possible but our procedure also takes into account information on the false negative rate.
We do not assert that our method alleaviates all concerns with multiplicity, and one possible direction of
future work is a multiplicity correction that adjusts both null and alternative hypothesis inferences for the
number of tests.
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Abstract We consider the nonparametric Bayesian estimation in a Gaussian sequence space model. The

procedure is studied from a frequentist point of view, that is, we are interested in an optimal concentration
rate of the posterior distribution shrinking to the distribution that generates the data. In a first step, we derive
lower and upper bounds for the posterior concentration rates over a family of Gaussian prior distributions
indexed by a tuning parameter. This result establishes posterior consistency, however the concentration rate
depends on the parameter of interest and a tuning parameter. Under a suitable choice of the tuning parameter
we derive a concentration rate uniformely over a class of parameters and show that this rate coincides with
the minimax rate. As the choice of the tuning parameter depends on the considered class, we introduce
in a second step a hierarchical prior and show that the resulting posterior concentration rate coincides in a
direct sequence space model with the minimax rate and prove, furthermore, that the fully data-driven Bayes
estimate is minimax-optimal.

Keywords: Bayesian methods
AMS subject classifications: 62C10

1 Introduction
Let `2 be the Hilbert space of square summable real valued sequences endowed with the usual inner product
〈·, ·〉`2 and associated norm ‖·‖`2 . In a Gaussian sequence space model we want to recover θ = (θj)j≥1 ∈ `2
from a version that is blurred by Gaussian white noise. We adopt a Bayesian approach, where the conditional
distribution of the observations given the parameter is Gaussian:

Yj |ϑj = θj ∼ N
(
λjθj , ε

)
, independent, j ∈ N, (1)

with sequence (λj)j≥1, λ for short, and noise level ε > 0. The sequence space model is called indirect if the
sequence λ tends to zero. The particular case of a constant sequence λ is also called direct sequence space
model. We will introduce a Gaussian prior distribution Pϑ of ϑ having a well-known Gaussian posterior
distribution Pϑ |Y. The objective is to derive its posterior concentration rate which are based on tail bounds
for noncentral χ2 distributions established in Birgé [2001]. To be more precise, we are seeking for a rate Rε
which is up to a constant a lower and an upper bound of the concentration rate of the posterior distribution
Pϑ |Y, i.e.,

lim
ε→0

EθoPϑ |Y(CRε ≤ ‖ϑ−θo‖2`2 ≤ CRε) = 1.

For a more detailed discussion see Barron et al. [1999], Castillo [2008] or Goshal et al. [2000]. This result
establishes posterior consistency, however, the concentration rate depends on the parameter of interest and
the choice of a tuning parameter. Under a suitable choice of the tuning parameter we derive a concentration
rate uniformly over a class of parameters and show that this rate coincides with the minimax rate derived
by Johannes and Schwarz [2013]. As the choice of the tuning parameter depends on the considered class,
we introduce a hierarchical prior and show that the resulting posterior concentration rate coincides in a
direct sequence space model with the minimax rate and prove, furthermore, that the fully data-driven Bayes
estimate is minimax-optimal. The proofs are given in Johannes and Schenk [2013].

∗Corresponding author, e-mail: rudolf.schenk@uclouvain.be
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2 Basic model assumptions

We assume a Gaussian prior distribution for the parameter ϑ = (ϑj)j≥1, that is {ϑj}j≥1 are independent,
normally distributed with prior means (θ×j )j≥1 and prior variances (ςj)j≥1:

ϑj ∼ N (θ×j , ςj), independent, j ∈ N. (2)

Standard calculus shows that the posterior distribution ofϑ given Y = (Yj)j≥1 is Gaussian, that is {ϑj}j≥1

are conditionally independent , normally distributed random variables given Y with posterior mean θY
j :=

E[ϑj |Y] =
ς−1
j θ×j +λjε

−1 Yj

λ2
jε
−1+ς−1

j

and posterior variance σ2
j := Var(ϑj |Y) = (λ2

jε
−1 + ς−1

j )−1, for all j ∈ N.

Moreover, a common Bayes estimate of the unknown parameter θ is the posterior mean E[ϑ |Y]. Taking
this as a starting point, we construct a sequence of prior distributions: To be more precise, let us denote by
δx the Dirac measure in the point x. Given m ∈ N, we consider the independent random variables {ϑmj }j≥1

and their marginal distributions

ϑmj ∼ N (θ×j , ςj), 1 ≤ j ≤ m and ϑmj ∼ δθ×j , m < j, independent j ∈ N (3)

resulting in the degenerate prior distribution Pϑm .Consequently, {ϑmj }j≥1 are conditionally independent
given Y and their posterior distribution is Gaussian with mean θY

j and variance σ2
j for 1 ≤ j ≤ m while

being degenerate on θ×j for j > m. Hence, the Bayes estimate θ̂m := E[ϑm |Y] is given for j ≥ 1 by
θ̂mj := θY

j 1{j ≤ m} + θ×j 1{j > m}. The dimension parameter m plays the role of a tuning parameter.
From a Bayesian point of view it is a hyperparameter and we will introduce now a prior distribution on
the same which leads to a hierarchical prior distribution. In the following we consider a random parameter
M taking its values in {1, . . . , Gε} for some Gε ∈ N and prior distribution PM. Both Gε and PM will
be specified below. Now given M we consider the random variables {Yj}j≥1 and

{
ϑM
j

}
j≥1

and their

distributions are determined by

Yj = λj ϑ
M +
√
εζj and ϑM

j = θ×j +
√
ςjηj1{1 ≤ j ≤ M}

where {ζj , ηj}j≥1 are iid. standard normally distributed and independent of M. The Bayes estimate θ̂ :=

E[ϑM |Y] satisfies θ̂j = θ×j for j > Gε and for all 1 ≤ j ≤ Gε

θ̂j = θ×j P (1 ≤ M ≤ j − 1|Y) + θY
j P (j ≤ M ≤ Gε|Y).

3 Theoretical results
A major step towards establishing a concentration rate of the posterior distribution consists a finite sample
bound for a fixed m ∈ N. We express these bounds in terms of

bm :=
∑
j>m

(θoj − θ×j )2, vm :=

m∑
j=1

σ2
j =

m∑
j=1

1

λ2
jε
−1 + ς−1

j

;

tm := max
1≤j≤m

σ2
j and rm :=

m∑
j=1

(Eθo [θY
j ]− θoj)2 =

m∑
j=1

ς−2
j (θ×j − θoj)2

(λ2
jε
−1 + ς−1

j )2
.
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Proposition 3.1. For all m ∈ N, for all ε > 0 and for all 0 < c < 1/8 we have

EθoPϑm |Y(‖ϑm−θo‖2`2 > bm + 3vm + (3/2)m tm + 4rm) ≤ 2 exp(−m/36);

EθoPϑm |Y(‖ϑm−θo‖2`2 < bm + vm − 4 c (m tm + rm)) ≤ 2 exp(−c2m).

The proof of the last result makes use of tail bounds for sums of independent squared Gaussian random
variables. The next assertion presents a version which is due to Birgé [2001].

Lemma 3.1. Let {Xj}j≥1 be independent and normally distributed r.v. with mean αj ∈ R and standard de-
viation βj ≥ 0, j ∈ N. For m ∈ N set Sm :=

∑m
j=1X

2
j and consider vm ≥

∑m
j=1 β

2
j , tm ≥ max1≤j≤m β2

j

and rm ≥
∑m
j=1 α

2
j . Then for all c ≥ 0 we have

sup
m≥1

e
c(c∧1)(vm+2rm)

4tm P
(
Sm − ESm ≤ −c(vm + 2rm)

)
≤ 1;

sup
m≥1

e
c(c∧1)(vm+2rm)

4tm P
(
Sm − ESm ≥

3c

2
(vm + 2rm)

)
≤ 1.

The desired convergence of all the aforementioned sequences to zero necessitates to consider appropriate
subsequences in dependence of ε, notably (vmε)mε≥1, (tmε)mε≥1 and (rmε)mε≥1. To be more precise, we
demande that the subsequences satisfy the following assumption.

Assumption A.1. There exist constants 0 < εo := εo(θo, θ
×, ς) < 1 and 0 < K := K(θo, θ

×, ς) < 1 such
that the prior distribution satisfies the condition sup0<ε<εo(rmε ∨ tmε)/(bmε ∨ vmε) ≤ K.

Corollary 3.1. Under Assumption A.1 we have for all 0 < ε < εo and 0 < c < 1/(8K)

EθoPϑmε |Y(‖ϑmε −θo‖2`2 > (4 + (11/2)K)[bmε ∨ vmε ]) ≤ 2 exp(−mε

36
); (4)

EθoPϑmε |Y(‖ϑmε −θo‖2`2 < (1− 8 cK)[bmε ∨ vmε ]) ≤ 2 exp(−c2mε). (5)

Thereby, assuming that mε := m(ε) is chosen such that tmε = o(vmε) as ε→ 0 implies the convergence to
zero of the posterior probability. Furthermore, if we assume in addition that vmε = o(1) and mε → ∞ as
ε→ 0 then we obtain by the dominated convergence theorem that also bmε = o(1). Hence, (bmε∨vmε)mε≥1

converges to zero and is indeed a posterior concentration rate.

Theorem 3.1 (Posterior consistency). Under Assumption A.1 if mε →∞ and vmε = o(1) as ε→ 0, then

lim
ε→0

EθoPϑmε |Y((1− 8cK)[bmε ∨ vmε ] ≤ ‖ϑmε −θo‖2`2 ≤ (4 + 11K/2)[bmε ∨ vmε ]) = 1.

Proposition 3.2 (Bayes estimate consistency). Let the assumptions of Theorem 3.1 be satisfied. Consider
the Bayes estimate θ̂mε := E[ϑmε |Y] then

Eθo‖θ̂mε − θo‖2`2 ≤ (3 +K)[bmε ∨ vmε ]

and consequently Eθo‖θ̂mε − θo‖2`2 = o(1) as ε→ 0.

The last assertion shows that (bmε ∨ vmε)mε≥1 is up to a constant a lower and upper bound of the concen-
tration rate. The result, however, is obtained under Assumption A.1 which depends on the particular choice
of the prior distribution. We suppose that the prior distribution, and more precisely, the prior variances are
chosen such that the following assumption holds.

Assumption A.2. Define Λj := λ−2
j , j ≥ 1, Λ(m) := max1≤j≤m Λj and Λm := m−1

∑m
j=1 Λj , m ≥ 1.

There exists a constant d such that ςj ≥ dΛj for all j ≥ 1.
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Corollary 3.2. Under Assumption A.2, let mε = m(ε) be chosen such that mε → ∞ and εmεΛmε = o(1)
as ε→ 0, and suppose in addition

lim sup
ε→0

Λ(mε)

{
bmε(εmε)

−1 ∨ Λmε
}−1

<∞ (6)

then there exist a constant K such that

lim
ε→0

EθoPϑmε |Y(K−1[bmε ∨ εmεΛmε ] ≤ ‖ϑmε −θo‖2`2 ≤ K[bmε ∨ εmεΛmε ]) = 1.

Under the conditions of the last assertion, the sequence (bmε ∨ εmεΛmε)mε≥1 provides up to constants a
lower and upper bound for the concentration rate. The result implies consistency but it does not answer the
question of optimality in a satisfactory way. Observe that the rate depends on the parameter of interest θ
and we could optimize the rate for each θ separately, but we are rather interested in a uniform rate over a
class of parameters. Given a strictly positive sequence a =

(
aj
)
j≥1

consider for θ ∈ `2 its weighted norm
‖θ‖2a :=

∑
j≥1 ajθ

2
j . We define `a2 as the completion of `2 with respect to ‖·‖a. We assume in the following

that the parameter θo belongs to the ellipsoid Θr
a :=

{
θ ∈ `a2 : ‖θ − θ×‖2a ≤ r

}
. Define for all ε > 0

m?
ε := m?

ε (a, λ) := arg min
m≥1

(a−1
m+1 ∨ εmΛm) and

R?ε := R?ε
[
a, λ
]

:= (a−1
m?ε+1 ∨ εm?

ε Λm?ε ).

Theorem 3.2 (Optimal posterior concentration rate). Under Assumption A.2, suppose in addition that m?
ε

satisfies (6) then there exists a constant K := K(Θr
a, λ) such that

lim
ε→0

inf
θo∈Θra

EθoPϑm?ε |Y(‖ϑm?ε −θo‖2`2 ≤ KR?ε ) = 1

moreover, if Ψε/R?ε = o(1) as ε→ 0 then

lim
ε→0

sup
θo∈Θra

EθoPϑm?ε |Y(‖ϑm?ε −θo‖2`2 ≤ Ψε) = 0.

It is interesting to note that the rate R?ε = R?ε
[
Θr

a, λ
]

is optimal in a minimax sense. To be more precise,
given an estimator θ̂ of θ let supθ∈Θra

Eθ‖θ̂−θ‖2 denote the maximal mean integrated squared error (MISE)
over the class Θr

a. It has been shown in Johannes and Schwarz [2013] that R?ε provides up to a constant a
lower bound for the maximal MISE over the class Θr

a and that there exists an estimator attaining this rate.
The next assertion establishes the minimax optimality of the Bayes estimate.

Proposition 3.3 (Minimax-optimal Bayes estimate). Let the assumptions of Theorem 4.1 be satisfied and
θ̂m

?
ε := E[ϑm

?
ε |Y] then there exists a constant K := K(Θr

a, λ) such that

sup
θo∈Θra

Eθo‖θ̂m
?
ε − θo‖2`2 ≤ KR?ε .

4 Adaptivity in the direct sequence space model
We will derive a concentration rate given the aforementioned hierarchical prior distribution in a direct se-
quence space model, that is λj = 1, j ≥ 1. For this purpose set Gε := bε−1c and

pM(m) =
exp(−mε )

∏m
j=1(1 + ςjε

−1)1/2∑Gε
m′=1 exp(−m

′
ε )

∏m′

j=1(1 + ςjε−1)1/2
for 1 ≤ m ≤ Gε . (7)
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Theorem 4.1 (Optimal posterior concentration rate). Under Assumption A.2 suppose in addition that m?
ε

satisfies (6) then there exists a constant K := K(Θr
a, λ) such that

lim
ε→0

inf
θo∈Θra

EθoPϑM |Y(‖ϑM−θo‖2`2 ≤ KR?ε ) = 1.

moreover, if Ψε/R?ε = o(1) as ε→ 0 then

lim
ε→0

sup
θo∈Θra

EθoPϑM |Y(‖ϑM−θo‖2`2 ≤ Ψε) = 0.

We shall emphasize that the concentration rate derived from the hierarchical prior coincides with the min-
imax optimal rate R?ε = R?ε

[
Θr

a, λ
]

of the maximal MISE over the class Θr
a. In particular this prior does

not involve any knowledge of the class Θr
a, therefore, the corresponding Bayes estimate is fully-data driven.

The next assertion establishes its minimax-optimality.

Proposition 4.1 (Minimax-optimal Bayes estimate). Under the assumptions of Theorem 4.1. Consider the
Bayes estimate θ̂ := E[ϑM |Y] then there exists a constant K := K(Θr

a, λ) such that supθo∈Θra
Eθo‖θ̂ −

θo‖2`2 ≤ KR?ε for all ε > 0.

Conclusions and perspectives. In this paper we have presented a hierarchical prior leading to a fully-data
Bayes estimate that is minimax-optimal in a direct sequence space model. Obviously, the concentration
rate based on a hierarchical prior in an indirect sequence space model possibly with additional noise in the
eigenvalues is only one amongst the many interesting questions for further research and we are currently
exploring this topic.
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ernment (Belgian Science Policy) and by the “Fonds Spéciaux de Recherche” from the Université catholique
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Abstract
Normal variance mixture models are used as an extension of the Gaussian framework to allow heavier tails
and add flexibility to the Wiener processes’ time concept. The Sub-Gaussian model is a typical representative
of this class. It is a parametric sub-class of the multivariate α-stable distribution which is an elliptical,
infinitely divisible and has a tractable representation of its characteristic function. It possesses heavy tails
but it is also a symmetric distribution.
To overcome the latter drawback a ρ-weighted, univariate, α-stable skewness component is introduced. The
domain of ρ and its connection to the skewness and the dependence structure are explored as well as some
of the border cases. By varying ρ from 0 to 1 the distribution transforms from a regular Sub-Gaussian to
multivariate α-stable with independent and not necessary symmetric components.

Keywords: Variance mixture, Multivariate stable models, Sub-Gaussian model, Asymmetric distributions
AMS subject classifications: 60E07, 62P05, 62E17

1 Introduction
A particular parametric subclass of the multivariate α-stable distributions is the class of α−stable sub-
Gaussian distributions. In this report we introduce a distribution based on the multivariate α−stable sub-
Gaussian distribution. All the marginal distributions within our model are α−stable however not symmetric
since different skewness parameters are allowed. This is extremely important extension because there is a
significant empirical evidence that many real world observable variables, e.g. the financial asset returns, are
not symmetric ([2], [5]). In the next two sections we give the definitions of the α−stable distributions and
the multivariate α−stable sub-Gaussian distributions. We provide without proofs some important properties
which are used later in the paper. Section 3 defines our multivariate distribution and investigates its key
properties and in Section 4 we discuss the model estimation methods and scenarios generation. In Section 5
we use the skewed sub-Gaussian distribution to model the dependence between US stock index and large
cap US stock. The last section summarizes the results and concludes the findings.

2 α−stable Distributions

2.1 Univariate and multivariate α−stable distributions
The class of α−stable distributions arises from the generalization of the central limit theorem. The sta-
ble distributions are the only possible weak limits of properly normalized sums of independent identically
distributed (i.i.d.) random variables. The normal distribution is a special case. They possess domains of
∗Corresponding author, e-mail: teodosi.g@gmail.com
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attraction; that is, a sum of i.i.d. random variables has properties close to the properties of the limit distribu-
tion and we can adopt the limit distribution as an approximate model. The domains of attraction property is
very desirable and it is not possessed by any other distribution for the summation scheme. The most natural
definition of a stable random vector is the following.

Definition 2.1. A random vector X = (X1, . . . , Xd)
T is said to be α−stable random vector in Rd, α ∈

(0, 2], if for any positive numbers A and B there is a vector d ∈ Rd such that

AX(1) +BX(2) d
= (Aα +Bα)1/αX + d (1)

where X(1) and X(2) are independent copies of X. The random vector X is called strictly stable if d = 0,
and is said to be symmetric stable if P(X ∈ U) = P(−X ∈ U) for any Borel set U ∈ Rd.

This definition extends to n i.i.d. copies of X for each n ∈ N which justifies the term ’stable’ because the
sum of i.i.d. random variables has the same distribution as X up to a scale and shift parameter.
Another equivalent way to define α−stable random vector is through its characteristic function.

Definition 2.2. A random vector X = (X1, . . . , Xd)
T is said to be α−stable random vector in Rd, α ∈

(0, 2], if there is a finite measure Γ on the unit sphere Sd and a vector µ ∈ Rd such that the characteristic
function Φα(u) := E(eiu

TX) has the following form:

(a) For α 6= 1,

Φα(u) = exp

{
−
∫
Sd
|(uT s)α|

(
1− i sign(uT s) tan

πα

2

)
Γ(ds) + iuTµ

}
;

(b) For α = 1,

Φα(u) = exp

{
−
∫
Sd
|uT s|

(
1 + i

2

π
sign(uT s) ln(uT s)

)
Γ(ds) + iuTµ

}
.

The pair (Γ,µ) is unique and is called spectral decomposition. The measure Γ is called spectral measure of
the stable random vector. The distribution of X is denoted by Sα(Γ,µ).

In the symmetric case equations (a) and (b) become the following one

(a’) For 0 < α 6= 2,

Φα(u) = exp

{
−
∫
Sd
|(uT s)α|Γ(ds) + iuTµ

}
.

The symmetric α−stable distributions are usually denoted by SαS(Γ,µ).
Next, we give three important properties of the one-dimensional stable distributions which are used further
in the paper.

Property 1. If Xi ∼ Sα(σi, βi, µi), i = 1, . . . , n are i.i.d. rv’s then

S =

n∑
i=1

Xi ∼ Sα(σ, β, µ)

where

µ =

n∑
i=1

µi, σ = (σα1 + . . .+ σαn)
1/α

, β =
β1σ

α
1 + . . . βnσ

α
n

σα1 + . . .+ σαn
.
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Property 2. If X ∼ Sα(σ, β, µ) then sX ∼ Sα(|s|σ, sign(s)β, sµ) and m+X ∼ Sα(σ, β,m+ µ).

Property 3. Let Z ∼ Sα′(σ, 0, 0) and let 0 < α < α′. Let Y be an α/α′−stable random variable, totally
skewed to the right

Y ∼ Sα/α′
((

cos
πα

2α′

)α′/α
, 1, 0

)
and assume that Z and Y are independent. Then

X = Y 1/α′Z ∼ Sα(σ, 0, 0).

This property implies that if Z is a zero mean Gaussian random variable and if Y is a positive α/2−stable
random variable independent of X, then

X = Y 1/2Z

is symmetric α−stable. This property implies that every symmetric α−stable random variable is condition-
ally Gaussian.

2.2 α−stable sub-Gaussian distributions
An important subset of the α−stable distributions is the class of sub-Gaussian distributions. They are a
special case of symmetric α-stable distributions, but their spectral measure is always discrete and this al-
lows us to have a tractable expression for the characteristic function. Property 3 plays a crucial role in the
investigation of the sub-Gaussian distributions.

Definition 2.3. Let Z ∼ N(0, Id) be a standard normal random vector in Rd. Let A be an d × d matrix,

µ ∈ Rd, and Y ∼ Sα/2
((

cos πα4
)2/α

, 1, 0
)
. Then the random vector X defined by

X = µ+
√
Y AZ (2)

is called α−stable sub-Gaussian random vector.

The matrix Σ = AAT is called dispersion matrix of the sub-Gaussian distribution. Equation (2) is equivalent
to

X = µ+
√
YU (3)

where U ∼ N(0,Σ). The sub-Gaussian random vector X inherits its dependence from the underlying
normal random vector U. Further in the paper we denote this class of distributions by SSGα (Σ,µ). It is a
special case of the so called normal mean-variance mixtures.

Property 4. Every sub-Gaussian random vector X defined as in Definition 2.3 has stable marginals with
parameters (α, 0, σi/

√
2, µi), i.e. Xi ∼ Sα(σi/

√
2, 0, µi), for i = 1, . . . , d, where σ2

i are the diagonal
elements of the dispersion matrix Σ.

Proof. The property is a direct consequence from Property 3 for α′ = 2. Note that by the definition of
the stable distribution we have S2(σ, 0, 0) is Gaussian distribution with standard deviation σ

√
2. Applying

Property 2 for the constant term µ concludes the proof.

Definition 2.4. The random vector X is said to have a (multivariate) normal mean-variance mixture distri-
bution if

X
d
= µ+ Y γ +

√
YAZ

where
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(i) Z ∼ N(0, Ik);

(ii) Y ≥ 0 is a non-negative, scalar-valued rv which is independent of Z;

(iii) A ∈ Rd×k is a matrix; and

(iv) µ and γ are parameter vectors in Rd.

In this case we have that
X|Y = y ∼ N(µ+ yγ, yΣ)

where Σ = AAT and it is clear why such distributions are known as mean-variance mixtures of normals.
The characteristic function of X is given by

ΦX(u) = eiu
TµĤ

(
1

2
uTΣu− iuTγ

)
, (4)

where Ĥ(s) = Ee−sY is the Laplace-Stieltjes transform of the mixing rv Y, which is also called subordina-
tor.
In our particular case Y ∼ Sα/2

((
cos πα4

)2/α
, 1, 0

)
, and Ĥ(s) = e−s

α/2

. In this way using (4) with

the particular form of Ĥ we obtain the characteristic function of the α−stable sub-Gaussian distribution
formulated in the following proposition.

Proposition 2.1. The characteristic function of the α−stable sub-Gaussian random vector
X ∼ SSGα (Σ,µ), defined by (2), has the form

ΦSGα (u) = eiu
Tµe−( 1

2u
TΣu)

α/2

. (5)

For α-stable sub-Gaussian random vectors, we do not need the spectral measure Γ in the characteristic
function. This fact simplifies the fit and the simulation of such distributions. The α−stable sub-Gaussian
distributions are a special subclass of the multivariate symmetric stable distributions, and therefore they are
elliptical distributions. It is well known that the elliptical distributions do not allow for modeling different
lower and upper tail dependence. Therefore, in the next section we define a modification of the classical
α−stable sub-Gaussian distribution allowing for asymmetry.

3 Skewed sub-Gaussian Distributions

Definition 3.1. Let Z ∼ N(0, Id) be a standard normal random vector in Rd. Let A be a d × d matrix,

µ ∈ Rd, and Y ∼ Sα/2

((
cos πα4

)2/α
, 1, 0

)
and let ρ ∈ (0, 1). For each i = 1, . . . , d define the random

variable Wi ∼ Sα(ρ1/α, ρ−1βi, 0) independent of Y and Wj , j 6= i, where βi = βi(ρ) ∈ (−ρ, ρ). Then the
random vector X defined by

X = µ+ W + (1− ρ)1/α
√
Y AZ, (6)

where W = 1√
2
(W1σ1, . . . ,Wdσd)

T and σ2
i is the i-th diagonal element of Σ = AAT , is called skewed

sub-Gaussian random vector with parameters (Σ,β,µ, ρ) with skewness parameter β = (β1, . . . , βd)
T .

The family of the skewed sub-Gaussian distributions will be denoted by SSSGα (Σ,β,µ, ρ), i.e. we write
X ∼ SSSGα (Σ,β,µ, ρ) for the random vector X defined by (6).

Property 5. Every slewed sub-Gaussian random vector X defined as in Definition 3.1 has asymmetric stable
marginals with parameters (α, βi, σi/

√
2, µi), i.e. Xi ∼ Sα(σi/

√
2, βi, µi), for i = 1, . . . , d.
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Proof. From (6) for each i = 1, . . . , d f we have

X = µ+ W + (1− ρ)
1/α
√
Y AZ = µ+ W + (1− ρ)

1/α
C, (7)

where C is sub-Gaussian vector. By applying Property 4 for the marginals of C and by the independence of
W, Y and Z we obtain

Xi = µi +
1√
2
Wiσi + (1− ρ)

1/α
Ci ∼ µi +

σi√
2
Sα

(
ρ1/α, ρ−1βi, 0

)
+

+ (1− ρ)
1/α

Sα

(
σi√

2
, 0, 0

)
(8)

Now from Property 1 and Property 2 we have

Xi ∼ µi + Sα

(
σi√

2
ρ1/α, ρ−1βi, 0

)
+ Sα

(
σi√

2
(1− ρ)

1/α
, 0, 0

)

∼ Sα
(
σi√

2
, βi, µi

)
(9)

The skewed sub-Gaussian multivariate distribution depends on a new scalar parameters ρ ∈ (0, 1) and
βi ∈ (−ρ, ρ). This restriction shows that the skewness of all the marginals is controlled by a single parameter
ρ ∈ (0, 1). The distribution is not anymore a member of the elliptical class. It is characterized by the
following theorem.

Theorem 3.1. Let X ∼ SSSGα (Σ,β,µ, ρ) be a skewed sub-Gaussian random vector. Then the characteristic
function of X is given by

ΦSSGα (u) = exp
{
iuTµ− 1

2 (1− ρ)
(
uTΣu

)α/2−
−ρ 2−α/2

∑d
j=1

(
|uj |ασαj

(
1− iβjρ sign(uj)C(uj , α)

))}
,

(10)

where C(u, α) = tan πα
2 for α 6= 1, and C(u, 1) = − 2

π ln |u|. Moreover,

(1) X
d→ X0 ∼ SSGα (Σ,µ), as ρ→ 0;

(2) X
d→ X1, which is a multivariate α−stable vector with independent components as ρ→ 1.

Proof. We calculate the respective limits in the characteristic function (10) when ρ → 0 and ρ → 1. When
ρ→ 0 we use the fact that βi/ρ < 1 (since βi depends on ρ) in order to obtain ΦSSGα (u)→ ΦSGα (u), where
ΦSGα (u) is defined by (5) in Proposition 2.1.
When ρ→ 1 we have

ΦSSGα (u)→ exp

iuTµ− 2−α/2
d∑
j=1

(
|uj |ασαj

(
1− iβj

ρ
sign(uj)C(uj , α)

)) ,

which is the characteristic function of W, i.e. an α−stable vector of independent components. This com-
pletes the proof.
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α (tail) β (skew) σ (scale) µ (location) S&P 500 Microsoft

S&P 500 1.65 -0.30 0.0057 0.0056 1 0.655
Microsoft 1.65 0.28 0.0081 0.0011 0.655 1

Table 1: S&P 500 and Microsoft estimations based on 3 years of daily data

4 Simulation
Both sub-Gaussian and the proposed skewed sub-Gaussian distributions posses convenient stochastic rep-
resentations. Thus the task of sampling from those distributions is reduced to sampling from multivariate
Gaussian distribution and sampling from one-dimensional α-stable distribution.
The problem of simulating from a multivariate Gaussian distribution is well studied and it can be solved by
applying singular value decomposition to the covariance and for example Box-Muller method for sampling
from a standard normal distribution.
In order to simulate from an α-stable distribution Sα(σ, β, µ) we can rely on the following algorithm:

• Generate U from U(−π2 , π2 ) (uniformly distributed in the interval (−π2 , π2 )) and E from Exp(1)
(exponentially distributed with mean 1).

• For α 6= 1 compute

X = µ+ σ
(

1 + β2 tan2 πα

2

) 1
2α · sin (α(U +B))

(cos(U))
1
α

·
(

cos (U − α (U +B))

E

) 1−α
α

, (11)

where
B =

1

α
arctan

(
β tan

πα

2

)
• For α = 1 compute

X = µ+ σ
2

π

(
β log σ +

(π
2

+ βU
)

tanU − β log

( π
2E cosU
π
2 + βU

))
. (12)

Rigorous proof and deviation of the above algorithm based on the Chambers-Mallows-Stuck method can be
found in [1], [8] and [9].

5 Example
In this section we provide some empirical results and produce simulations for the series of Standard & Poors
500 (SPX) index and Microsoft (MSFT). The multivariate distribution is fitted on the log-return series rt
which is obtained from the price series pt using the following transformation

rt = log

(
rt
rt−1

)
.

We use 750 daily log-returns (which is approximately 3 years of data) up to 27 Aug 2013.
Utilizing MLE approach (see [6]) we estimate the asymmetric stable parameters for the two series. Numbers
are available in Table 1.
We also estimate the correlation matrix of the two series and use it to approximate the dispersion matrix of
the sub-Gaussian component.
Comparison between historically observed log-returns and simulations using different multivariate models
— multivariate Gaussian, sub-Gaussian and skewed sub-Gaussian with ρ = 0.3 is provided in Figure 2.
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Figure 1: 750 S&P 500 and MSFT daily log-returns up to 27 Aug 2013
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Figure 2: Historical and simulated returns of S&P 500 vs MSFT

6 Summary
We use the asymmetric stable distributions and their appealing properties to extend and add skew to the
sub-Gaussian multivariate distribution. The derived distribution depends on a skew-weight parameter ρ ∈
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(0, 1). We obtain the limiting distributions in case ρ tends to 0 (the regular sub-Gaussian distribution) and 1
(multivariate stable distribution with independent components).
Simulation techniques for the asymmetric stable distributions and hence for the sub-Gaussian and skewed
sub-Gaussian distributions are outlined. We also present some empirical results using the proposed distribu-
tion although its estimation is still an open question.
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Abstract
The application of the MDL principle to discern from which distribution a sample originates is discussed
with the focus is on the general class of spherical distributions. Their trivial generalization the elliptical
distributions are widely used in financial theory and have properties that enable us to calculate a closed form
solution of their distribution complexity.
The MDL principle and its codelength/model interpretation is discussed first, as well as its application in
model selection. Then the NML model is introduced as a suitable choice and its equivalent formulation as
the model complexity is explored. After that the distribution complexity is presented as a solution of the
problem of infinite model complexity, with the rest of the paper exposing the main result - the calculation of
the distribution complexity for spherical distributions.
The analytical formulas for the distribution complexity are explicitly shown in three cases - the Gaussian
distribution, the Student-T distribution and the Laplace distribution. Thoughts on their interpretation of the
change of complexity with the size of the sample are presented with a somewhat surprising characterization
of the NML model for the spherical distributions that has potential impact on robust estimation.

Keywords: MDL, Model Selection, Complexity, Distribution Selection, Spherical distributions, Student-T
distribution, Laplace distribution
AMS subject classifications: 94A17, 62B10, 62F03

1 Introduction
The problem discussed in this paper is problem of determining the distribution of a sample using the Min-
imum Description Length principle (MDL). The choice of distributions is the general class of spherical
distributions.
This problem of model selection is one of the classical problems in statistics. Using a naı̈ve approach to
selection using the Neyman-Pearson lemma runs into problems as soon as the simple exact two distribution
test is extended to a continuum of hypotheses.
Naturally a more sophisticated Bayesian approach like that of [1] yields more convincing results by casting
the problem into a Bayesian framework, however there is something deeply unsatisfying in assigning sub-
jective prior probabilities. Using Jeffreys’ objective priors instead turns out to be very closely related to the
MDL principle.
The Minimum Description Length principle (MDL) in its most basic form states that the more the data
generated by a process can be compressed, the more we know about it. This simple idea has some very
interesting applications and is presented briefly in section 2.
The purpose of this paper is to present the surprising result that in a very important sense all spherical
distributions have identical descriptive power.
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2 Minimum Description Length Principle
A classic example problem used in the inspirational paper of Kolmogorov [2] is that if you are charged with
the task of transmitting three sequences of a million symbols, each 0 or 1, like the following

• 0101010101010101010101010101010101010. . .

• 1101100111111101111110110011111111111. . .

• 1010101000111010001110100011101011110. . .

you can certainly do better than transmitting the whole sequence bit by bit, if you exploit the regularities in
the data.
In each of those cases knowledge of the patterns in the data would allows more effective transmission, which
is why the MDL principle equates knowledge with compression. The first sequence is just 01 repeated, so
sending this instruction instead is quite a lot faster. The second has about 9 ones for each zero, so long
strings of ones can be encoded with shorter codes than strings of zeroes, and transmitted by shorter codes
than the trivial. For the third not much can be done, as it is generated random and independent with equal
probabilities of 0 and 1.
Regrettably allowing the use of any code renders the problem of finding the shortest codes uncomputable.
The main insight of Rissanen is for the MDL principle to restrict the set of codes to those corresponding
to probability distributions. In addition the distributions are only used as a description method and are not
assumed to actually generate the modeled process.
Suppose there is a random variable X with distribution f . There is an optimal code called Shannon-Fano
code for X that encodes an obvservation x with a codeword with length

L(x) = − ln f(x) + ∆ (1)

where ∆ is a constant dependent only on the desired precision of x, so is usually skipped.
Most research in the area is focused on extending this and finding suitable coding schemes when there are
many possible distributions for X . In the literature a set of distributions with some defining characteristic
(e.g. the set of all normal distributions) is called a model. For each distribution there is an optimal code,
namely the Shannon-Fano code. A single distribution that approximates all distributions in a model “well” is
called an universal model and the main line of research on the MDL principle is the discovery and application
of those models.
More general overview of the MDL principle can be found in [3] and one focused on statistical modelling
in [4].
In this paper the Normalized Maximum Likelihood model is used, first introduced in [5] and subsequently
thoroughly explored for various problems. It is defined as follows: suppose a sample is to be modeled using
a parametric family with parameter θ and have its MLE θ̂(x). A natural idea is to use code with length

LNML(x) = − ln f(x|θ̂(x)) + ln

∫
f (y|µ̂(y), σ̂(y)) dy = − ln f(x|θ̂(x)) + COMPn (f)

The last term is called the complexity of the model and the NML model is defined only whenCOMPn (f) <
∞.
This is the basis for the stochastic complexity (SC) criterion for model selection: having a finite number of
competing models, encode the sample using the NML distribution for each model and choose the one having
the smallest codelength LMNML(x). The chosen model is the best description of the data at hand.
The main result in this paper is the computation of the model complexity for the spherical distributions and
the fact that they are all in some sense equivalent.
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3 Scale-location families
In this section some basic definitions and previous results are provided as discussed in [6].
As it turns out for scale-location families the model complexity is infinite. There are several ways to deal
with the infinities, most notable of which are the renormalization by complexity conditional on the data
space as presented in [7] and the usage of complexity conditional on the parameter space as in [8]. The
first approach allows comparison between different distributions, but the renormalization step is not really
needed.
A scale-location family is a family of distributions having p.d.f. f (xn|µ, σ) for which a function g(yn)
exists satisfying

f (xn|µ, σ) = σ−ng

(
xn − µ
σ

)
The model complexity for many families, including the above, turns out to be infinite, so a natural choice is
to use the complexity conditional on xn. This has been studied in [6] and the following important decompo-
sition applies (Theorem 1, pp. 109):

COMPn (M|{−R ≤ µ̂ ≤ R,D ≤ σ̂}) = ln

∫
xn∈A

f (xn|µ̂, σ̂) dxn =

= ln 2RD−1 + lnDCn (M)

The last term is called the distribution complexity, because it does not depend on the restriction of xn, freeing
the model comparison procedure of the arbitrary bounds R and D. It is defined as

DCn (M) = EYn [δ (µ̂ (Yn) (1− σ̂ (Yn)))] =

∫
δ (µ(Y n)) δ (1− σ(Y n)) g(yn)dyn

where Yn ∼ g(yn) and δ is the Dirac delta function.

4 Elliptical distributions

Let f(x) be an arbitrary univariate distribution satisfying f(x) = ch(x) for an even functon h and a normal-
izing constant c. The multivariate spherical generalization of g is defined as

f(xn|µ, σ) = cσ−nh
(
σ−2 (xn − µ)

T
(xn − µ)

)
The defining feature of a spherical family is that x = 1

n

∑
xi and s2 = 1

n

∑
(xi−x)2 are sufficient statistics

for µ and σ. If in addition h is decreasing and differentiable and w0 is the smallest non-negative solution of
− 2
nw

∂h
∂w (w) = h(w), then the MLEs for (µ, σ) are µ̂ = x and σ̂2 = n

w0
s2. Thus the spherical family can

be re-parameterized to have σ̂2 = s2 by multiplying σ by
√

n
w0

.

Note: Other parameterizations require different conditions on the model complexity in order to use the same
region of xn between models, which cancels their effect on the distribution complexity.
Using this parameterization allows direct application of the results for scale-location family from section
3. Combined with the application of the properties of the δ-function and the fact that on the peak of the
distribution’s p.d.f. its value is equal to c · h(n) (hence is independent of the sample), an analytic formula
for model complexity can be obtained as follows

DCn (M) = 2n2

∫
2n−2q−p2>0

g(yn−2, yn−1(·), yn(·))
(
2n− 2q − p2

)− 1
2 dyn−2 =
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Figure 1: The distribution complexity of various distributions vs sample size.

=
2n

n
2 π

n−1
2

Γ
(
n−1

2

) [c · h(n)]

So for any spherical distribution satisfying the above relatively weak conditions allow an analytic formula for
the model complexity. After substituting the likelihood evaluated at the MLE is f(x|θ̂(x)) = s−nc · h (n),
the codelength used in the SC becomes

LNML(x) = n ln s− ln [c · h (n)] + ln
2n

n
2 π

n−1
2

Γ
(
n−1

2

) + ln [c · h(n)] = n ln s+ ln
2n

n
2 π

n−1
2

Γ
(
n−1

2

)
which does not depend on the actual spherical distribution, so regrettably it cannot be used to distinguish
between the spherical distributions.

5 Examples: Normal, Student-T and Laplace
In addition to the classical result for the complexity of the normal distribution, two more distributions’
compexities are plotted on figure 1:

DCn (M) =



2(n2 )
n
2 e−

n
2

√
πΓ(n−1

2 )
for the Gaussian distribution

2n
n
2 Γ(n+ν

2 )
√
πΓ(n−1

2 )ν
n
2 Γ( ν2 )

(
1 + n

ν

)−n+ν
2 for the Student-T distribution

nnΓ(n2 )
2
√
πΓ(n−1

2 )Γ(n)
e−n for the Laplace distribution
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6 Conclusions
The fact that the spherical distributions have complexity that offsets exactly their log-likelihood is surprising
and it shows that the fitting method is actually the one responsible for the model complexity in the NML
model, not the distribution itself. This means that for robust estimators, where a computing method for the
parameters is usually described instead of a distribution, the model complexity as defined by Shtarkov in [5]
can be extended to be used for any method of fitting and is a sensible way to measure its model complexity.
A classical result is that for the Student-T distribution there is no MLE for µ, σ and the degrees of freedom ν
simultaneously. This is caused by the fact that the derivative of the likelihood is positive for all ν, however it
can be interpreted through the fact that the model complexity increases with ν and the log-likelihood’s bias
toward choosing the more complex model. Accounting for the model complexity in the SC criterion will
also fail to choose a model, but for a different reason - because of the indifference to the actual distribution,
as long as it is spherical.
Acknowledgements: I want to the thank my PhD advisor Prof. Plamen Mateev for his continuing support
and inspiration. This work was supported by the European Social Fund through the Human Resource De-
velopment Operational Programme under contract BG051PO001-3.3.06-0052 (2012/2014). The research is
partially supported by appropriated state fund for research allocated to Sofia University (contract 111/2013),
Bulgaria.

Bibliography

[1] Kass, R. and Raftery, A. (1995) Bayes factors. Journal of the American Statistical Association. 90,
773-–795.

[2] Kolmogorov, A. N. (1963) On Tables of Random Numbers. Sankhya: The Indian Journal of Statistics,
Series A. 25, 369-–376.

[3] Grünwald, P. (2007) The Minimum Description Length Principle, The MIT Press, Cambridge MA.
[4] Rissanen, J. (2007) Information and Complexity in Statistical Modeling (Information Science and Statis-

tics), Springer, 2007.
[5] Shtarkov, Y. (1987) Universal Sequential Coding of Single Messages. Problems of Information Trans-

mission. 23, 175-–186.
[6] Nonchev, B. (2013) Minimum Description Length Principle in Discriminating Marginal Distributions.

Pliska Stud. Math. Bulgar.. 22, 101-–114.
[7] Rissanen, J. (2000) MDL Denoising. IEEE Transactions on Information Theory. 46, 2537-–2543.
[8] Stine, R. and Foster, D. (2001) The Competitive Complexity Ratio. Proceedings of the 2001 Conference

on Information Sciences and Systems. WP8 1–6.
[9] Grünwald, P., Myung, J. I., and Pitt, M. (2005) Advances in Minimum Description Length: Theory and

Applications, The MIT Press, Cambridge MA.
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Abstract
In [3], a new method has been presented for making inference about the tail of samples coming from un-
known heavy-tailed distribution. Method is based on asymptotic properties of the empirical structure func-
tion, a variant of statistic that resembles usual sample moments. Using this approach one can successfully
inspect the nature of the tail of the underlying distribution, as well as provide estimated values on the un-
known tail index. Here we briefly describe the method and test its performance on some simulated and real
world data by comparing it with the well known Hill estimator.

Keywords: heavy-tailed distributions, tail index, empirical structure function, scaling functions, Hill esti-
mator.
AMS subject classifications: 62F10, 62F12, 62E20.

1 Introduction
Heavy-tailed distributions are of considerable importance in modeling a wide range of phenomena in finance,
geology, hydrology, physics, queuing theory and telecommunication. Since the work of Mandelbrot [4],
where stable distributions with index less than 2 have been advocated for describing fluctuations of cotton
prices, there has been an exhausting research concerning the use of heavy-tailed distribution in the context
of finance.
We define that the distribution of some random variable X is heavy-tailed with index α > 0 if it has a
regularly varying tail with index −α, i.e.

P (|X| > x) =
L(x)

xα
, |x| → ∞,

where L(t), t > 0, is a slowly varying function, i.e., L(tx)/L(x) → 1 as |x| → ∞, for every t > 0. In
particular, this implies that E|X|q < ∞ for q < α and E|X|q = ∞ for q > α, which can be used as
the alternative definition. We are interested in the estimation of the unknown tail index α, measuring the
”thickness” of the tails, based on the finite data sample with no additional assumptions on the distribution of
the data.
There exists a range of estimators for this particular problem. The most well known estimators are the
Pickand’s, Hill and moment estimator by Dekkers, Einmahl and de Haan. A nice survey of these estimators
and their properties can be found in [2] and [1]. Tail index estimators are usually based on upper order statis-
tics and their asymptotic properties. As an alternative, [5] proposed an estimator based on the asymptotics
of the partial sum. In this paper we present a novel approach given in [3]. We evaluate the performance
of this estimator on some real world examples and compare it with probably the most popular one, the Hill
estimator.

∗Corresponding author, e-mail: dgrahova@mathos.hr
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2 Estimation method
The estimator presented in [3] is based on asymptotic properties of the empirical structure function (also
called partition function), a kind of statistic that resembles usual sample moments. More precisely, given
a sample X1, . . . , Xn coming from a strictly stationary stochastic process {Xt, t ∈ Z+} (discrete time) or
{Xt, t ∈ R+} (continuous time) which has a heavy-tailed marginal distribution with unknown tail index α,
define

Sq(n, t) =
1

bn/tc

bn/tc∑
i=1

∣∣∣∣∣∣
btc∑
j=1

Xt(i−1)+j

∣∣∣∣∣∣
q

, (1)

where q > 0 and 1 ≤ t ≤ n. In words, we partition the data into consecutive blocks of length btc, then sum
each block and take the power q of the absolute value of the sum. Finally, we average over all bn/tc blocks.
Notice that for t = 1 one gets the usual empirical q-th absolute moment.
Asymptotic properties of Sq(n, t) have been considered before in the context of multifractality detection
(see [3] and the references therein). Instead of keeping t fixed, we take it to be of the form t = ns for some
s ∈ (0, 1), which allows the blocks to grow as the sample size increases. It is clear that then Sq(n, ns)
will diverge since s > 0. The quantity of interest is the rate of divergence of this statistic, i.e. we consider
the limiting behavior of lnSq(n, n

s)/ lnn. This has been established in [3] under the assumptions of strict
stationarity of the sequence Xt, t ∈ Z+ and mild dependence condition in the form of the strong mixing
property with an exponentially decaying rate (for details see [3]). It is also assumed that the expectation is
zero in case when it is finite. The proof of the theorem can be found in [3].

Theorem 2.1. Suppose Xt, t ∈ Z+ is a strictly stationary sequence that has a strong mixing property with
an exponentially decaying rate and suppose that Xt, t ∈ Z+ has a heavy-tailed marginal distribution with
tail index α > 0. Suppose also that EXi = 0 when α > 1. Then for q > 0 and every s ∈ (0, 1)

lnSq(n, n
s)

lnn

P→ Rα(q, s) :=


sq
α , if q ≤ α and α ≤ 2,

s+ q
α − 1, if q > α and α ≤ 2,

sq
2 , if q ≤ α and α > 2,

max
{
s+ q

α − 1, sq2
}
, if q > α and α > 2,

(2)

as n→∞, where P→ stands for convergence in probability.

It is clear that the limit considered in the preceding theorem heavily depends on the tail index α, which
makes it possible to make inference about the unknown tail index. First notice that if for some non-
negative sequence {Zn} of random variables lnZn/ lnn

P→ a ∈ R, then for some function M such that
lnM(n)/ lnn → 0, Zn/naM(n)

d→ Z as n → ∞, where Z is a random variable not identically equal to
zero (possible degenerate). So, it follows from Theorem 2.1 that εn :=

Sq(n,n
s)

nRα(q,s)M(n)

d→ ε, where ε is a
random variable not identically equal to zero. By simply rewriting this, one arrives at the

lnSq(n, n
s)

lnn
= Rα(q, s) +

lnM(n)

lnn
+

ln εn
lnn

. (3)

This equation can be seen as the regression model. The term ln εn/ lnn can be considered as an error term
in the regression of lnSq(n, n

s)/ lnn on q and s. One should count on the intercept in the model, in order
to compensate for the lnM(n)/ lnn term. The possible nonzero mean of an error can be subtracted and
considered as a part of the intercept.
The basic idea of the approach presented in [3] is to estimate the tail index α by the means of Equation (3).
To avoid bivariate regression, one can assume the limit is linear in s, i.e. Rα(q, s) = τ(q)s + c(q). This
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holds exactly except in the case q > α > 2. By theoretically regressing lnSq(n, n
s)/ lnn on s, for a range

of values s ∈ (0, 1), one gets the expression for τ(q) (notice that this is obvious in case α ≤ 2):

τ(q) =


q
α , if 0 < q ≤ α & α ≤ 2,

1, if q > α & α ≤ 2,
q
2 , if 0 < q ≤ α & α > 2,
q
2 + 2(α−q)2(2α+4q−3αq)

α3(2−q)2 , if q > α & α > 2.

(4)

τ(q) is refereed to as the scaling function. When α is large, i.e., α→∞, it follows from (4) that τ(q) = q/2.
This corresponds to data coming from a distribution with all moments finite, e.g., an independent normally
distributed sample. This line will be referred to as the baseline. Theoretical plots of scaling functions for a
range of α values are shown in Fig. 1. It is clear that the shape of the scaling function is heavily influenced
by the value of tail index α.

Figure 1: Plots of scaling function τ(q) against the moment q
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The baseline is shown by a dashed line. The case α ≤ 2 (α = 0.5, 1.0, 1.5) and α > 2 (α = 2.5, 3.0, 3.5, 4.0) are
shown by dot-dashed and solid lines, respectively.

Having a finite data sample, one can estimate τ(q) in a single point q as the slope in the simple linear
regression model by regressing lnSq(n, n

s)/ lnn on s, for a range of values of s ∈ (0, 1). More precisely,
fix q > 0 and for si ∈ (0, 1), i = 1, . . . ,m calculate Si = lnSq(n, n

si)/ lnn, i = 1, . . . ,m based on the
data sample. Now, estimate the value of the scaling function at the point q as(

τ̂(q), b̂
)

= arg min
(a,b)∈R2

m∑
i=1

(Si − asi − b)2
. (5)

Repeating this for a range of q makes it possible to give a plot of empirical scaling function τ̂ . By comparing
empirical scaling function with Fig. 1, one can make inference about the nature of the tails of the underlying
distribution. Moreover, by minimizing the difference between the theoretical scaling function (4) and the
empirical one τ̂(q) for some range of q ∈ (0, qmax) one can find the estimate for α. More precisely, for
points qi ∈ (0, qmax), i = 1, . . . , n, estimate τi = τ̂(qi) by the means of Equation (5). Estimator is defined
as

α̂ = arg min
α∈(0,∞)

m∑
i=1

k∑
j=1

(τi − τ(qi))
2. (6)
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Method is divided in two cases, α ≤ 2 and α > 2, in order to simplify the estimation procedure. Cases can
be distinguished graphically by plotting the empirical scaling function.

3 Examples and comparison with Hill estimator
In this section we test the performance of estimator (6) on some known data sets and compare it with the
Hill estimator. Let X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics of the sample X1, X2, · · · Xn, and
kn be a sequence of positive integers satisfying 1 ≤ kn < n, limn→∞ kn = ∞, and limn→∞ (kn/n) = 0.
The Hill estimator based on kn upper order statistics is

α̂kn =

(
1

kn

kn∑
i=1

log
X(i)

X(kn+1)

)−1

. (7)

Hill estimator is known to be weakly consistent as well as strongly consistent and asymptotically normal
under certain conditions. For details see [2]. However, performance of the Hill estimator is heavily influ-
enced by the choice of kn. There is no generally accepted method on how to choose kn, and it is usually
recommended to plot the values for a range of kn values and to look for the part of the graph where the value
stabilizes. The resulting plot is usually called Hill plot.

3.1 Example 1 - non-constant slowly varying function in the tail
Hill estimator is known to behave poorly if the slowly varying function in the tail is far away from constant.
We compare this behavior with the performance of the estimator (6). Consider two distribution F1, F2

defined by their survival functions

F 1(x) = 1− F1(x) =
1

x
3
2

, x ≥ 1, (8)

F 2(x) = 1− F2(x) =
e

3
2

x
3
2 lnx

, x ≥ e. (9)

Both distributions are heavy-tailed with tail index equal to 3/2. We generate samples from these two dis-
tributions with 5000 observations. Corresponding Hill plots are shown in Figure 2(a). For F2, one could
wrongly conclude that the value of the tail index is around 2. The Hill’s method is highly sensitive to the
presence of non-constant slowly varying function in the tail. This is sometimes called Hill horror plot (see
[2]). Figure 2(b) shows empirical scaling functions for the same samples together with the theoretical one
and the baseline. One can see that scaling functions almost coincide with the theoretical one. Calculating
estimates using (6) yields values α̂1 = 1.441 and α̂2 = 1.5141. It seems that non-constant slowly varying
function affects the estimation but the effect is not so dramatical as for the Hill estimator. Most important
part of the scaling functions for the inference about the tail is before the breakpoint and the breakpoint itself.
For example, one can try estimating α only based on the values of τ̂(q) for q less than a breakpoint observed
graphically by fitting simple linear regression through origin. Theoretically, slope of the regression line
should be 1/α. For example above, using q ∈ (0, 1.5) one gets estimates for α: 1.454 for F1 and 1.527 for
F2.

3.2 Example 2 - non heavy-tailed distribution
For the next example we compare the behavior of two estimators when the underlying distribution is not
heavy-tailed. For this purpose, sample of 2000 observations was generated from standard logistic distribution



18TH EUROPEAN YOUNG STATISTICIANS MEETING 43

0 1000 2000 3000 4000
kn

1.5

2.0

2.5

3.0

a

a=3ê2
a
`

2
Hill HknL

a
`

1
Hill HknL

(a) Hill plot

2 4 6 8 10

q

1

2

3

4

5

tHqL

q

2

tHqL a �

3

2

t
`
2 HqL

t
`
1 HqL

(b) Scaling functions

Figure 2: Example 1

given by probability density function

f(x) =
e−x

(1 + e−x)2
, x ∈ R.

Figure 3(a) shows the Hill plot. It is impossible to draw any conclusion by only analyzing the Hill plot. This
is why it is always necessary to use some other techniques for detecting heavy tails in data samples. On the
other hand, estimated scaling function provides self contained characterization of the tail. From Figure 3(b)
one can surely doubt the existence of heavy-tails since the empirical scaling function almost coincides with
the baseline q/2.
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Figure 3: Scaling function

3.3 Example 3 - EUR/USD exchange rates
In this example we analyze daily closing rates of euro against U.S. dollar during the period 2007 − 2012.
The data consists of differences of rates and has 1868 observations. Hill plot is shown in Figure 4(a) and
corresponding scaling function in the Figure 4(b). Hill plot fails to stabilize, but one could say this happens
for kn around 100 yielding, for example, value α̂ = 3.133 for kn = 100. Scaling function evidently points
that the variance is finite since the break occurs after q = 2 and the plot coincides with the baseline before
the break. Estimation for the case α > 2 yields the value 3.112, consistent with the Hill estimator.
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Figure 4: Scaling function

3.4 Example 4 - daily log-returns of DAX
Next example again involves financial data. We use daily log-returns of the German stock index DAX
(September 20, 1988 - August 24, 1995), similar to Figure 6.4.12 in [2]. Hill plot in Figure 5(a) is made by
using absolute value of the data. Following [2], one can conclude that the plot stabilizes around 2.8 for 100 ≤
kn ≤ 300. However, plot fails to stabilize for larger kn, similar as in the Example 1. Data has been centered
for the estimation of the scaling function on Figure 5(b). Plot shows that α could be somewhere between 2
and 2.5. Calculating the estimate (6) yields the value 2.465. Thus, there is a significant discrepancy between
two estimates. Considering the inconclusiveness of the Hill plot, one could give preference to the estimate
(6).
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Figure 5: Scaling function
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Accelerated failure time model for repairable systems
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Abstract
When studying the service record of a device which is a subject to degradation, we want to estimate the
time-to-failure distribution for maintenance optimization. The dependency of the failure time distribution
on applicable regression variables can be described with a suitable model. For instance, we may use the
number of repairs and maintenance actions or their cost as time-varying covariates. For this situation, the
Cox proportional hazards model has been suggested, with the repairs and maintenance actions influencing
the hazard function multiplicatively. Alternatively, we can use the Accelerated failure time model, where
the covariates cause the internal time of the device to flow faster or slower. In this work we describe such
models and demonstrate their application on real data.

Keywords: Reliability analysis, Repair models, Regression, Accelerated Failure Time model.
AMS subject classifications: 62N02.

1 Introduction
We study data describing a service record of one or more devices which degrade over time. In case of
a failure, it is necessary to perform a repair. Preventive maintenance is performed to avoid breakdowns,
and to optimize the maintenance costs, it is desirable to estimate the distribution of the time to failure
with the help of available information. Regression models used in survival analysis can be adjusted to
accommodate recurring repairs and maintenance actions. The Cox proportional hazards model for repairable
systems was described by Percy and Kobbacy [6], with covariates multiplicatively influencing a parametric
baseline hazard. In this work, we show a similar approach with the Accelerated failure time model (AFT)
with time-varying covariates (Lin and Ying [3]), where the covariates and regression parameters influence
multiplicatively the flow of the internal time of the device. Further, we show methods of estimating the
cumulative baseline hazard nonparametrically if we have data on more devices, which allows us to estimate
the regression parameters without assumptions on the shape of the baseline. Finally, we show the application
of all described methods on real data from oil industry.

2 Modeling the lifetime of a repairable system
Suppose we observe n independent devices. Let Ti1, ..., Tini be random variables representing the ordered
times of actions (repair or maintenance) performed on the i-th device. Denote ∆i1, ...,∆ini the indicators
whether in j-th time on the i-th device a repair (∆ij = 1) or a maintenance (∆ij = 0) was performed and
letXi(t) = (Xi1(t), ..., Xip(t))

T be explanatory variables, possibly time-varying.

∗e-mail: novakp@karlin.mff.cuni.cz
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We work with counting processes denoting the number of repairs and maintenance actions on the i-th device
up to time t:

Ni•(t) =

ni∑
j=1

I(Tij ≤ t,∆ij = 1), Mi•(t) =

ni∑
j=1

I(Tij ≤ t,∆ij = 0).

Denote the hazard function for the i-th device

λi(t) = lim
h→0

P (Ni•(t+ h)−Ni•(t) ≥ 1|H(t))/h

where H(t) is the history of events up to time t. Further denote the cumulative hazard functions Λi(t) =∫ t
0
λi(s)ds and Si(t) = exp(−Λi(t)) corresponding survival functions of the time to failure distributions.

We assume that a repair returns the device to working state and that it affects the hazard function. We
parametrize the hazard function and estimate the parameters using the maximum likelihood method. The
likelihood can be written as

L =

n∏
i=1

 ni∏
j=1

λi(T
−
ij )∆ij · Si(Tini)

 .

We need the left limit, as λi change at the times of the events. The log-likelihood has then the form

l =
∑
ij

∆ij log λi(T
−
ij )−

∑
i

∫ Tini

0

λi(t)dt. (1)

With help of the counting processes of the failures Nij(t) = ∆ijI(Tij ≤ t) and the at-risk indicators
Yij(t) = I(Ti,j−1 < t ≤ Tij), we may write the log-likelihood as

l =
∑
ij

∫ ∞
0

(
log λi(t

−)dNij(t)− Yij(t)λi(t−)dt
)
.

3 The Accelerated failure time model
We assume that the covariates cause the internal time of the device to flow faster or slower (Accelerated
Failure Time model, AFT). We use the time transformation (Lin and Ying [3])

t→
∫ t

0

eX
T
i (s)βds =: hi(t,β),

Denote λ0 the baseline hazard function. The AFT model works with the hazard function for the i-th device
in the form

λi(t) = λ0(hi(t,β))eX
T
i (t)β.

If the baseline hazard function is constant (corresponding with the exponential distribution), the AFT model
coincides with the Cox proportional hazards λi(t) = λ0(t)eX

T
i (t)β, where the covariates affect the hazard

function multiplicatively.
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3.1 Parametric inference
We can assume that each repair or maintenance action has an influence on the flow of the time and set the
number of actions (Ni•(t) and Mi•(t)) as explanatory variables. Furthermore, we can add the cost or type
of the last action as a covariate (Percy and Alkali [4]). If the covariate values change only in the times of
observed events and the baseline hazard λ0(t) is parametric, it is possible to insert the hazard function into
the log-likelihood 1 and maximize. The significance of the parameters can be then assessed by a likelihood
ratio test, with 2

(
l(β̂)− l(β10, β̂(2,...p))

)
∼ χ2

1 for testing β1 = β10 etc.

3.2 Semiparametric inference
If we have data on more than one device, it is possible to estimate the baseline nonparametrically. This may
be desirable, since we do not need to pose any assumptions on the form of the baseline and focus solely on
the regression parameters.
For each device we have the time transformation t→ hi(t,β). We work with time-transformed processes

N∗ij(t,β) = ∆ijI(hi(Tij ,β) ≤ t), M∗ij(t,β) = (1−∆ij)I(hi(Tij ,β) ≤ t),

Y ∗ij(t,β) = I(hi(Ti,j−1,β) < t ≤ hi(Tij ,β)), X∗i (t,β) = Xi(h
−1
i (t,β)).

The score obtained by taking the derivative of the log-likelihood with respect to β has the form

U(β) =
∑
ij

∫ ∞
0

Wi(t
−,β)

(
dN∗ij(t,β)− Y ∗ij(t,β)dΛ0(t)

)
,

where Wi(t,β) =
λ′0(t)
λ0(t)

∫ h−1
i (t,β)

0
XT
i (s)eX

T
i (s)βds+X∗i (t,β). This form is relatively complicated, with

terms λ′0 and λ0 not easy to estimate. However, it can be replaced by the approximate score by inserting
W 0
i (t,β) = X∗i (t,β) instead of Wi(t,β) (Lin and Ying [3]). We can then insert the Nelson-Aalen estimate

of the cumulative baseline hazard function

Λ̂0(t,β) =

∫ t

0

dN∗••(s,β)∑
ij Y

∗
ij(s,β)

and get the score in form

U(β) =
∑
ij

∫ ∞
0

(
X∗i (t

−,β)−
∑
klX

∗
k(t−,β)Y ∗kl(t,β)∑
kl Y

∗
kl(t,β)

)
dN∗ij(t,β).

Because the score is not continuous in β, we obtain the parameter estimates by minimizing ‖U(β)‖.
The variance of β̂ depends on the unknown λ′0(t) and λ0(t) and cannot be estimated easily. A resampling
technique has been developed to avoid this problem (Lin et.al [2]) but is not described here due to pressure
of space. The significance of the parameters can be tested with the score statistics

U(β10, β̂(2,...p))
T Î−1(β10, β̂(2,...p))U(β10, β̂(2,...p))

etc., where Î is the estimate of the observed information matrix,

Î(β) =
∑
ij

∫ ∞
0

(
X∗i (t

−,β)−
∑
klX

∗
k(t−,β)Y ∗kl(t,β)∑
kl Y

∗
kl(t,β)

)⊗2

dN∗ij(t,β).
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4 Modeling the lifetime of oil pumps
We explore data on the service of oil pumps during several years (Kobbacy et al. [1] and Percy and Alkali
[5]). For one device we have detailed data on n1 = 65 times of repairs and maintenance actions and the
cost of each action in man-hours. This data has been studied by Percy and Alkali [4] using the Cox model.
We model the lifetime using the AFT model as shown above with various parametrized baseline hazard
functions and covariates. For four other pumps we have only the times of actions at disposal, (n2, . . . , n4) =
(51, 90, 30, 30). We use both the semiparametric methods and parametrized baseline hazards to estimate the
regression parameters utilizing data of all the five pumps.

4.1 Parametric modeling of one pump service
As covariates, we use the number of repairs Ni•(t) and maintenances Mi•(t), the indicator whether the last
action was a repair Ni∆(t) =

∑n
j=1 ∆ijI(Tij ≤ t < Ti,j+1) and the cost of the actions, with parameters

β = (σ, ρ, τ, b)T . Using methods from above we estimate the parameters in the AFT model. We try to
maximize the likelihood for exponential, Weibull λ0(t) = aλata−1, gamma f(t) ∝ ta−1e−λt and truncated
Gumbel λ0(t) = λat baseline distributions. We perform the likelihood ratio test to determine whether each
covariate can be replaced by zero.

λ0 log - lik eσ̂ eρ̂ eτ̂ eb̂ λ̂ â
Exp. -213.3 0.910 1.443 1.448 1.0054 0.0011 −
Significance < 0.001 < 0.001 0.052 0.086

Weibull -212.6 0.913 1.315 1.243 1.0054 0.0009 1.514
Significance < 0.001 < 0.001 0.140 0.068

Gamma -213.2 0.901 1.501 1.506 1.0052 0.0007 0.722
Significance < 0.001 < 0.001 0.034 0.095

Gumbel -210.2 0.870 1.373 1.204 1.0043 0.0004 1.001
Significance < 0.001 < 0.001 0.017 0.047

Table 1: The log-likelihood, parameter estimates and the p-values of the tests of nullity from parametric
models of the lifetime of one oil pump.

Comparing the likelihood values in Table 1 we find that it is highest with the truncated Gumbel distribution.
Further we see that the more each action did cost, the more it accelerated the internal time, because eb̂ > 1.
Each man-hour of the action means an acceleration of time by about 0.5%. This covariate is, however,
significant on α = 0.05 only in the last case. The cumulative number of repairs has a positive influence
(eσ̂ < 1), whereas the number of maintenance actions has interestingly a negative influence (eρ̂ > 1). This
could be due to repairs often taking much more man-hours than maintenances, resulting in negative influence
of both. The number of repairs and maintenances are both significant. If the last action was a repair, the time
flows about 20 − 50% faster compared to when it was a maintenance, but the influence is significant only
with Gamma and Gumbel baselines.

4.2 Semiparametric modeling of the lifetime of five pumps
For five devices we have only the times of repairs and maintenances available. The data on the cost of the
actions was not available for all pumps, therefore we estimate only the regression parameters σ, ρ and τ .
We tried both the parametric model with the same baseline distributions as above and the semiparametric
model. In the parametric cases we maximize the log-likelihood whereas in the semiparametric approach we
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insert the estimate of the cumulative baseline hazard into the score function and minimize ‖U(β)‖. We test
the significance of each covariate with the likelihood ratio test for the parametric cases and with the score
test for the semiparametric model. The likelihood in the semiparametric methods depends on the unknown
baseline hazard and therefore is not available for a direct comparison.

λ0 log - lik eσ̂ signif. eρ̂ signif. eτ̂ signif. λ̂ â
Exp. -875.1 1.012 < 0.001 0.988 0.055 1.655 < 0.001 0.012 −
Weibull -875.1 1.012 < 0.001 0.986 0.019 1.653 < 0.001 0.012 1.021
Gamma -874.8 1.012 < 0.001 0.993 0.271 1.673 < 0.001 0.011 0.759
Gumbel -871.3 1.033 < 0.001 1.025 0.033 1.544 < 0.001 0.010 0.999
nonparam. − 1.072 0.007 1.016 0.015 1.064 0.030 − −

Table 2: The log-likelihood, parameter estimates and the p-values of the tests of nullity from modeling the
lifetime of five pumps.

In Table 2 we see that in all cases the internal time accelerates with each repair (eσ̂ > 1). Among the
parametric models, the Gumbel distribution has the highest likelihood. In that case and also in the semi-
parametric model, the maintenance actions have also a negative influence, whereas in the other cases it is
positive. The time flows faster if the last action was a repair, but the extent of the temporary acceleration
is much larger in the parametric models (54 − 67%) than in the semiparametric (6.4%). This difference
requires further study, it might be explained to some extent as a compensation for different tail behavior
of the parametric and semiparametric estimates of the baseline hazard. For α = 0.05, all covariates have
a significant influence, except for the number of maintenances in the parametric case with exponential and
Gamma distributions.

5 Conclusion
We explored methods for modeling the influence of maintenance and repairs on the lifetime of the observed
device with the help of the Accelerated failure time model. The model has a straightforward interpretation,
stating that the covariates accelerate or decelerate the flow of the internal time of the device and therefore
cause it to age faster or slower. For a parametric baseline hazard function, the service record of one device
is enough to obtain the estimates of the regression parameters. If we have data on more devices at disposal,
it is possible to estimate the cumulative baseline hazard function nonparametrically. Further research could
concern developing goodness-of-fit tests or testing whether a nonparametric estimate may be replaced by a
suitable parametrized baseline hazard.
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Score test statistic for change-point detection in AR time series with
dependent errors
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Abstract
Detecting changes in the parameter values of any model is of great importance for many sectors. With a
model up to date we are able to give better predictions. Finding a change-point can help us to understand the
influence of some events on observed data. The efficient score test statistic was introduced in [5] for detecting
changes in the parameters of autoregressive(AR) time series with independent identically distributed(i.i.d)
errors. This test allows us to detect a change in all the parameters at once or in every parameter separately.
We study the behavior of this statistic when the assumption of i.i.d. white noise is violated and replaced with
the assumption of having martingale difference sequence. We present the simulation study which shows us
the asymptotic behavior and the power of this test statistic.

Keywords: Change-point detection, Invariance principle, Autoregressive time series.
AMS subject classifications: primary 62F05, secondary 60F17, 62M10.

1 Introduction
One of the first tests for a parameter change at an unknown time was suggested in the article [8] in 1954.
Since then, many methods were developed and studied. For a review see [1]. The changes in the parameters
of the autoregressive (AR) time series were studied e.g. in [3], [5] or [6]. Our interest is in the efficient
score statistic, which was introduced in [5] under the assumption of independent identically distributed
(i.i.d.) error sequence. There are processes that can be expressed as AR processes, for example general
integer autoregressive process (GINAR) or random coefficient autoregressive process (RCA), in which the
assumption of i.i.d. errors does not hold. We are studying how the efficient score statistic works under
weaker assumption than an i.i.d. white noise sequence.

2 Score test statistic
In this section we describe the construction of score test statistic and shortly explain the test for detecting
changes in one parameter or in all the parameters at once.
Let the sequence {Yi} satisfy the autoregressive model of order p AR(p)

Yi − µ =

p∑
j=1

φj(Yi−j − µ) + εi, 1 ≤ i ≤ k

Yi − µ∗ =

p∑
j=1

φ∗j (Yi−j − µ∗) + ε∗i , k + 1 ≤ i ≤ n.
(1)

∗e-mail: starinskak@gmail.com
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where {εi} resp. {ε∗i } is a noise sequence with zero mean and E[ε2
i ] = σ2 resp. E[ε∗2i ] = σ∗2,

ξ = (µ, φ1, . . . , φp, σ
2)′

is the vector of parameters before change and

ξ∗ = (µ∗, φ∗1, . . . , φ
∗
p, σ
∗2)′

is the vector of parameters after change-point k.
We test the null hypothesis that there is no change in the parameter values against the alternative hypothesis,
that there exist time k such that at least one of the observed parameters changed:

H : k = n,

A : k < n.

We derive the efficient score statistic under the null hypothesis and under the assumption of normally
distributed error sequence {εi}. Therefore we know the analytical expression of the conditional density
f(Y, ξ) = f(Yi|Yi−1, . . . , Yi−p) of Yi under Yi−1, . . . , Yi−p and the (conditional) logarithmic likelihood
function of Y−p+1, . . . , Y0, Y1, . . . , Yk

`k(ξ) = −k
2

log(2πσ2)− 1

2

k∑
i=1

Yi − µ− p∑
j=1

αj(Yi−j − µ)

2

.

The efficient score vector is the vector of partial derivations of the logarithmic likelihood function with

respect to unknown parameters ∇ξ`k(ξ) =
(
∂`k(ξ)
∂µ , ∂`k(ξ)

∂φi
, . . . , ∂`k(ξ)

∂φp
, ∂`k(ξ)
∂σ2

)′
. To normalize the scores,

we need the information matrix which in this case has the block-diagonal form

I(ξ) =

(
−E

[
∂2 ln f(Y, ξ)

∂ξi∂ξj

])p+1

i,j=1

=

 1
σ2 (1−∑p

j=1 φj)
2 0 0

0 1
σ2 Γ 0

0 0 1
2σ2

 , (2)

where Γ is a covariance matrix of the vector (Y1, . . . , Yp)
′. The special form of the information matrix

allows us to test the change in all the parameters at once or in a smaller group of parameters assuming that
all the other parameters are not changed.
Denote ξ̂n the estimate of ξ based on the whole observed sequence of length n. Then, the efficient score test
statistic is

B̂(u) = n−1/2I−1/2(ξ̂n)∇ξ`[nu](ξ̂n), 0 ≤ u ≤ 1, (3)

where [x] is the integer part of x.
Although, we derived the statistic B̂(u) under the assumption of Gaussian white noise, it is not a necessary
condition. When we replace the normality of errors by appropriate conditions on the moments of errors, the
likelihood function will become quasi-likelihood and the test will still be valid.
Let us formulate the following assumptions:

(A1) {εi} is a sequence of i.i.d. random variables with zero mean and variance σ2.

(A2) {εi} is a m.d.s., where E[ε2
i |Fi−1] = σ2, such that Fi−1 = σ(εs, s ≤ i− 1).

In [5] the following theorem is proven:
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Theorem 2.1. Let {Yi} be a sequence satisfying model AR(p), where {εi} satisfies (A1) and E|εi|κ <∞ for
some κ > 4. Furthermore, assume that characteristic polynomial φ(z) = 1−∑p

j=1 φjz
j has roots outside

the unit circle. Then there exists a (p+ 2)-dimensional Gaussian process B(u) with independent Brownian
bridge components B(j)(u), j = 1, 2, . . . , p+ 2, such that

max
1≤j≤p+2

sup
0≤u≤1

|B̂(j)(u)−B(j)(u)| = op(1).

The assumption (A1) can be replaced by (A2) and similar theorem can be proved by following the steps of
the proof in [5] and using corresponding limit theorems for martingale difference sequences.

Proposition 2.1. Let {Yi} be a AR(p) process with a stationary, ergodic m.d.s. {εi} that satisfies (A2) and
E|εi|κ <∞ for some κ > 4. Moreover, let the characteristic polynomial φ(z) = 1−∑p

j=1 φjz
j have roots

outside the unit circle. Then there exists a (p + 2)-dimensional Gaussian process B(u) with independent
Brownian bridge components B(j)(u), j = 1, 2, . . . , p+ 2, such that

max
1≤j≤p+2

sup
0≤u≤1

|B̂(j)(u)−B(j)(u)| = op(1).

We say that there is a change in the parameter ξj for some j = 1, . . . , p+ 2 if

sup
0≤u≤1

|B̂(j)(u)| ≥ C(α),

where C(α) is a critical value corresponding to a significance level α gained from the properties of supre-
mum of Brownian bridge

P

(
sup

0≤t≤1
|B(t)| ≥ x

)
= 2

∞∑
k=1

(−1)k+1 exp{−2k2x2}.

Critical values can be found in some statistical tables, for example in [7].
We reject the null hypothesis (there is a change in one or more parameters) on a significance level α if the
following inequality holds

max
1≤j≤p+2

sup
0≤u≤1

|B̂(j)(u)| ≥ C(α∗),

where α∗ = 1− (1− α)1/(p+2), because we are testing (p+ 2) parameters for a possible change.

3 Simulation Study
Firstly, we simulate the AR sequences under the null hypothesis and we use the score test statistic to detect
the change in one of the parameters. We count how many times the test statistic indicate a change-point,
even if there is no change in the parameter values for both cases (A1) and (A2) and compare the results.
Then, we look at the power of this test when the value of one of the parameters change and again compare
the results for AR time series with (A1) and (A2) assumption.
The significance level is always set to be α = 0.05.

We generate 1000 sequences of the AR(1) process with i.i.d. errors and 1000 realizations of AR(1) process
with m.d.s. errors. We set the parameters for both processes as follows ξ = (µ, φ1, σ

2)′ = (5, 0.25, 5)′ and
the length of the generated sequences is n = 300 (the process of length 400 is generated and the first 100
observations are discarded to gain the stationary process). Then we test this sequences for changes in any
of the parameters. In Table 1 we can see the relative number of rejections of the null hypothesis even if it
holds.
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Significance level AR(1) under (A1) AR(1) under (A2)
0.05 0.046 0.052

Table 1: The relative number of falsely rejected null hypothesis for AR(1) process on a significance level
0.05.

Next, we would like to know the power of our test. We simulated one change in the parameter values
of AR(1) sequence at fixed time and we watched how many times the change was detected. Again, we
studied both cases (A1) and (A2). The results are in Table 2 and Table 3. First column is the time when the
parameter changed (change-point). The other columns show the relative number of detected changes when
the parameters changed from ξ to ξ∗ at time k. There are two types of changes, the first one is relatively
small compared to the values of ξ and the other one is relatively big. Table 2 corresponds to the assumption
(A1) and Table 3 corresponds to (A2).

change-point ξ = (5, 1/4, 5)′ ξ = (5, 1/4, 5)′

k ξ∗ = (6, 1/3, 16/3)′ ξ∗ = (8, 1/2, 6)′

75 0.082 0.788
150 0.212 0.999
225 0.125 0.985

Table 2: The relative number of detected changes in AR(1) process under the assumption (A1).

change-point ξ = (5, 1/4, 5)′ ξ = (5, 1/4, 5)′

k ξ∗ = (6, 1/3, 16/3)′ ξ∗ = (8, 1/2, 6)′

75 0.070 0.643
150 0.093 0.993
225 0.073 0.960

Table 3: The relative number of detected changes in AR(1) process under the assumption (A2).

Detection of small changes in the parameters of AR(1) process is much more difficult for processes with
m.d.s. white noise. Further, we see that the score test is strongest when the change appears in the middle of
observed sequences. As expected, moving the change-point to the beginning or end of the sequences caused
lowering the ability to detect a change.

4 Conclusion
Presented generalization of the efficient score statistic gives the opportunity to detect change-points in more
general models than common AR(p) model. As the simulation study shows, the number of rejected null
hypothesis, if there is no change, is approximately the same as the significance level α for both cases. From
the second part of the simulation study it seems, that replacing (A1) by (A2) lowered the power of the score
test.
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[1] Csörgö, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis, Chichester: Wiley.
[2] Davidson, J. (1994). Stochastic Limit Theory: Advanced Texts in Econometrics, Oxford University Press,

USA.
[3] Davis, R.A., Huang, D. and Yao, Y.-C. (1995). Testing for a Change in the Parameter Value and Order

of an Autoregressive Model. Ann. Statist., 23, 282-304.,
[4] Eberlein, E. (1986). On Strong Invariance Principles Under Dependence Assumptions. Ann. Probab.,

14, 260-270.
[5] Gombay, E. (2008). Change Detection in Autoregressive Time Series. J. Multivar. Anal., 99, 451-464.
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Some properties of a class of continuous time moving average
processes

Andreas Basse-O’Connor∗

Department of Mathematics, Aarhus University, Denmark

Abstract
A continuous time moving average is a process X = {Xt : t ∈ R+} of the form

Xt =

∫ t

−∞
φ(t− s) dZs (1)

where φ : R+ → R is a deterministic function and Z = {Zt : t ∈ R} is a process with stationary and
independent increments (a so-called Lévy process). In the case where the kernel function φ is the gamma
density, i.e. φ(t) = e−λttγ−1 where γ, λ > 0, we derive necessary and sufficient conditions on γ, λ for X
to have sample paths of finite variation, or more generally, to be a semimartingale.

Keywords: Finite variation, Semimartingales, Moving averages, Gamma density
AMS subject classifications: 60G48, 60H05, 60G51, 60G17

1 Introduction
In discrete time, moving average processes play an important role in time series analysis. A moving average
is a process of the form Xn =

∑n
k=−∞ φn−kZk where {φk}k∈Z+

is a deterministic sequence of real
numbers and {Zk}k∈Z is a sequence of independent and identically distributed random variables. Their
continuous time analogue (called continuous time moving averages) are processes X = {Xt : t ∈ R+} of
the form

Xt =

∫ t

−∞
φ(t− s) dZs (2)

where φ : R+ → R is a deterministic function and Z = {Zt : t ∈ R} is a process with stationary
and independent increments (i.e. a Lévy process). As usual we will assume that Z has right-continuous
sample paths and Z0 = 0. Suppose moreover that Z has no Gaussian component. The process Z is
completely determined (in law) by its shift parameter b ∈ R and its Lévy measure ν from the Lévy–
Khintchine representation

E[eiθZ1 ] = exp
(
ibt+

∫
R

(
eiθx − 1− iθ[[x]]

)
ν(dx)

)
, θ ∈ R, (3)

where ν is a Borel measure onR satisfying
∫
R

(|x|2∧1) ν(dx) <∞ and [[x]] := x/(max{1, |x|}), x ∈ R, is
a truncation function. We will assume that Z is non-deterministic in the sense that ν(R) > 0. All stochastic
integrals are defined as in Rajput and Rosiński [5, page 460].
∗e-mail: basse@imf.au.dk
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A function f : R→ R is said to be of finite variation if V(f ; [a, b]) <∞ for all finite a < b where

V(f ; [a, b]) = sup
n∈N

a=t0<···<tn=b

n∑
i=1

|f(ti)− f(ti−1)|. (4)

A key example of a function of finite variation is an absolutely continuous function, that is, where f satisfies

f(t) = f(u) +

∫ t

u

f ′(s) ds, for all u, t ∈ R, u ≤ t (5)

for some locally integrable function f ′ : R → R. The following result, which is a special case of [3,
Theorems 3.1 and 3.3], will be used to characterize the finite variation property of a class of moving averages
described below.

Theorem 1.1 (Basse-O’Connor and Rosiński). Consider a continuous time moving average X given by (2).
If X has sample paths of finite variation a.s. and

∫
[−1,1]

|x| ν(dx) = ∞, then φ is absolutely continuous
with a derivative φ′ satisfying∫

|x|≤1

∫ ∞
0

(
|φ′(s)x| ∧ |φ′(s)x|2

)
ds ν(dx) <∞. (6)

Conversely, if ν is concentrated on [−1, 1] and φ is absolutely continuous with a derivative φ′ satisfying (6),
then X has right-continuous sample paths of finite variation a.s.

Besides the finite variation property we will study the more general semimartingale property. A stochastic
process Y = {Yt : t ∈ R+} is called a semimartingale with respect to a filtration F = (Ft)t≥0 if it has a
decomposition of the form

Yt = Y0 +Mt +At, (7)

where M is a right-continuous local martingale, A is a right-continuous adapted process with sample paths
of finite variation and Y0 is F0-measurable. We refer to [4] for more information on semimartingales, here
we will just note that one can define a Lebesgue–Stieltjes integral (resp. an Itô integral) with respect to
a stochastic process if and only if it has sample paths of finite variation (resp. is semimartingales). Both
properties play a fundamental role in stochastic analysis and its applications.
In this note we will focus on moving averages X given by (2) where the kernel function φ is the density of
a gamma distribution (up to a multiplicative constant), that is, for λ, γ > 0

φ(t) = φλ,γ(t) = e−λttγ−1, t > 0. (8)

The gamma kernel (8) is used to model turbulence using ambit processes; see [1] and the reference therein.
In Theorem 2.2 below we characterize the set of λ, γ and ν for which X has sample paths of finite variation,
or more generally, is a semimartingale with respect to the filtration FZ = (FZt )t≥0 given by

FZt = σ(Zs : s ∈ (−∞, t]) ∨N , (9)

where N is the set of all null sets.

2 Main results

Throughout this section X = {Xt : t ≥ 0} is a continuous time moving average process given by

Xt =

∫ t

−∞
φλ,γ(t− s) dZs (10)
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where Z is a Lévy process without Gaussian component given by (3) with Lévy measure ν and φλ,γ is the
gamma density given by (8). Our main results, Theorems 2.1 and 2.2, are stated below and are followed by
three examples. The proofs are postponed to the next section.

Theorem 2.1. Process X given by (10) is well-defined, i.e. the stochastic integrals exists, if and only if the
following two conditions are satisfied:

(i)
∫
|x|≥1

log(|x|) ν(dx) <∞,

(ii) One of the following (a)–(c) are satisfied:

(a) γ > 1
2 ,

(b) γ = 1
2 and

∫
|x|≤1

|x|2| log(|x|)| ν(dx) <∞,

(c) γ ∈ (0, 1
2 ) and

∫
|x|≤1

|x|1/(1−γ) ν(dx) <∞.

The next result gives an explicit characterization of when X has sample paths of finite variation or is a semi-
martingale. In the case γ = 1, X is a Lévy driven Ornstein–Uhlenbeck process and hence a semimartingale
with respect to FZ . Moreover, X has sample paths of finite variation if and only if Z has sample paths of
finite variation (i.e.

∫
[−1,1]

|x| ν(dx) <∞). Thus in the following result we will assume that γ 6= 1.

Theorem 2.2. Let X be a stochastic process given by (10) with γ 6= 1. Then the following three conditions
are equivalent:

(I) X is a semimartingale with respect to FZ ,

(II) X has right-continuous sample paths of finite variation with probability one,

(III) One of the following (A)–(C) are satisfied:

(A) γ > 3
2 ,

(B) γ = 3
2 and

∫
|x|≤1

|x|2| log(|x|)| ν(dx) <∞,

(C) γ ∈ (1, 3
2 ) and

∫
|x|≤1

|x|1/(2−γ) ν(dx) <∞.

Theorem 2.2 shows that when γ 6= 1 then X is a semimartingale if and only if it is of finite variation. Below
we use Theorems 2.1 and 2.2 to study three examples.

Example 2.1. Suppose thatZ is a symmetricα-stable Lévy process withα ∈ (0, 2), i.e. ν(dx) = c|x|−1−α dx
where c > 0. Then X is well-defined if and only if γ > (α − 1)/α, and it is a semimartingale with respect
to FZ if and only if γ > (2α− 1)/α or γ = 1.

Example 2.1 may be viewed as a natural generalization of the case where Z is a Gaussian Lévy process (i.e.
a Brownian motion). In this case Z is a 2-stable Lévy process and X is a semimartingale with respect to FZ

if and only if γ = 1 or γ > 3
2 ; see [1].

Example 2.2. Suppose that Z is a normal inverse Gaussian Lévy process. In this case ν(dx) = f(x) dx
where f(x) ∼ c|x|−2 as x → 0 and f decays exponential fast as |x| → ∞. The process X is well-defined
for all γ, λ > 0, and it is a semimartingale with respect to FZ if and only if γ ≥ 1.

Example 2.3. Suppose that Z is an inverse Gaussian Lévy process, i.e.

ν(dx) = ce−rxx−3/21{x>0} dx

where c, r > 0. For all γ, λ > 0, X is well-defined and is a semimartingale with respect to FZ .
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3 Proofs

For notation simplicity we will suppress λ and γ in φλ,γ , that is, φ(t) = e−λttγ−1 for t ≥ 0.

Proof of Theorem 2.1. Recall that [[x]] := x/(max{1, |x|}). The stochastic integral (10) is well-defined if
and only if the following two conditions are satisfied (cf. [5, Theorem 2.7])∫

R

∫ ∞
0

(
|φ(s)x|2 ∧ 1

)
ds ν(dx) <∞, (11)∫ ∞

0

∣∣∣bφ(s) +

∫
R

(
[[xφ(s)]]− φ(s)[[x]]

)
ν(dx)

∣∣∣ ds <∞. (12)

Note that φ(s)/sγ−1 → 1 as s → 0 and there exist two constants c1, c2 > 0 such that c1e−2λs ≤ φ(s) ≤
c2e
−(λ/2)s for all s ≥ 1. Hence the inner integral in (11) is bounded from above and below by constants

times ∫ 1

0

(
|sγ−1x|2 ∧ 1

)
ds︸ ︷︷ ︸

I1(x)

+

∫ ∞
1

(
|e−asx|2 ∧ 1

)
ds︸ ︷︷ ︸

I2(x)

(13)

where a = 2λ in the lower bound and a = λ/2 in the upper bound. Calculating the integral I2(x) yields that
I2(x) is bounded from above and below by constants times

log(|x|)1{|x|>e} + |x|21{|x|≤e}. (14)

A similar calculation shows that I1(x) is bounded from above and below by constants times
|x|21{|x|≤1} + 1{|x|>1} γ > 1

2

|x|2| log(|x|)|1{|x|≤1/2} + 1{|x|>1/2} γ = 1
2

|x|1/(1−γ)1{|x|≤1} + 1{|x|>1} γ ∈ (0, 1
2 ).

(15)

This shows that φ satisfies (11) if and only if (i)–(ii) of Theorem 2.1 are satisfied. Furthermore, if (i)–(ii) are
satisfied then a similar calculation shows that (12) is satisfied. This completes the proof.

To prove Theorem 2.2 we will need the following remark:

Remark 3.1. For γ > 1 the function φ is absolutely continuous with a derivative φ′(t) = e−λt((γ −
1)tγ−2 − λtγ−1). We have that φ′(t)/tγ−2 → (γ − 1) as t→ 0 and c1e−2λt ≤ |φ′(t)| ≤ c2e−(λ/2)t for all
t ≥ 1, where c1, c2 > 0 are two constants. These estimates show that the inner integral in (6) is bounded
from above and below by constants times∫ 1

0

(
|sγ−2x| ∧ |sγ−2x|2

)
ds+

∫ ∞
1

(
|e−asx| ∧ |e−asx|2

)
ds (16)

where a = 2λ in the lower bound and a = λ/2 in the upper bound. Thus by a similar calculation as used in
the proof of Theorem 2.1, it follows that φ satisfied (6) if and only if (III) of Theorem 2.2 holds.

Proof of Theorem 2.2. If γ ∈ (0, 1) then limt↓0 φ(t) = ∞ and by [7, page 86], X has unbounded sample
paths on each compact interval with strictly positive probability, which exclude that X satisfies (I) or (II).
Thus we may and do assume that γ > 1. The implication (II)→ (I) is true in general, and the implication
(II)→ (I) follows by [2, Theorem 4.1]. That is, we need to show the equivalence between (II) and (III) under
the assumption γ > 1.
(II)→ (III): Suppose thatX has right-continuous sample paths of finite variation almost surely. If

∫
[−1,1]

|x| ν(dx) <

∞ then (III) follows from the inequality
∫

[−1,1]
|x| ν(dx) ≤

∫
[−1,1]

|x|1/(2−γ) ν(dx). Therefore we may and
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do assume that
∫

[−1,1]
|x| ν(dx) = ∞. By Theorem 1.1, φ is absolutely continuous with a derivative φ′

satisfying (6), which implies that (III) is satisfied cf. Remark 3.1.
(III) → (II): Suppose that (III) holds. According to the Lévy–Itô decomposition (see [8, Theorem 19.2])
there exists a decomposition Z = Zs +Z l where Zs and Z l are two independent Lévy processes with Lévy
measures νs = ν|[−1,1] and νl = ν|[−1,1]c , respectively. Decompose X as Xt = Xs

t +X l
t where

Xs
t =

∫ t

−∞
φ(t− u) dZs

u and X l
t =

∫ t

−∞
φ(t− u) dZ l

u. (17)

The two integrals exist thanks to Theorem 2.1. By Remark 3.1, φ is absolutely continuous with a derivative
φ′ satisfying (6) and since νs is concentrated on [−1, 1], Xs has right-continuous sample paths of finite
variation cf. Theorem 1.1. To show that X l has a.a. sample paths of finite variation let B = {Bt : t ∈ R}
be a process with B0 = 0 satisfying Bt − Bu = V(Z l, (u, t]) for all u ≤ t. Then B is an increasing Lévy
process with Lévy measure νB given by νB(A) =

∫
R

1A(|x|) νl(dx) for all Borel measurable sets A ⊆ R
cf. [8, Theorem 21.9]. We extend φ toR by setting φ(t) = 0 for t < 0. From the fact that φ is increasing on
(−∞, λ/(γ − 1)] and decreasing on [λ/(γ − 1),∞) it follows that there exists a constant c > 0, depending
only on t, γ and λ, such that

V(φ(· − u); [0, t]) = V(φ; [−u, t− u]) ≤ ce(λ/2)u for all u ∈ R. (18)

For all 0 = t0 < · · · < tn = t we have

n∑
i=1

|X l
ti −X l

ti−1
| =

n∑
i=1

∣∣∣ ∫ t

−∞

(
φ(ti − u)− φ(ti−1 − u)

)
dZ l

u

∣∣∣ (19)

≤
∫ t

−∞
V(φ(· − u); [0, t]) dBu ≤ c

∫ t

−∞
e(λ/2)u dBu (20)

where the latter integral is finite a.s. due to the fact that
∫
|x|≥1

log(|x|) νB(dx) < ∞, see e.g. [6, Theorem
55 (i)]. Thus X l has a.a. sample paths of finite variation. By Lebesgue’s dominated convergence theorem it
follows that X l has continuous sample paths a.s. This completes the proof.
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Intervention in Ornstein-Uhlenbeck SDEs
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Abstract
We introduce a notion of intervention for stochastic differential equations and a corresponding causal inter-
pretation. For the case of the Ornstein-Uhlenbeck SDE, we show that the SDE resulting from a simple type
of intervention again is an Ornstein-Uhlenbeck SDE. We discuss criteria for the existence of a stationary
distribution for the solution to the intervened SDE. We illustrate the effect of interventions by calculating
the mean and variance in the stationary distribution of an intervened process in a particularly simple case.

Keywords: Causality, Intervention, SDE, Ornstein-Uhlenbeck process, Stationary distribution.
AMS subject classifications: 60G15.

1 Introduction
Causal inference for continuous-time processes is a field in ongoing development. Similar to causal infer-
ence for graphical models, see [8], one of the primary objectives for causal inference for continuous-time
processes is to estimate the effect of an intervention given assumptions on the distribution and causal struc-
ture of the observed continuous-time process.
Several flavours of causal inference are available for continuous-time processes, see for example [3], [4] and
[9]. In this paper, we outline a notion of intervention for stochastic differential equations and a corresponding
causal interpretation, we calculate the solution to an intervened Ornstein-Uhlenbeck SDE, and we calculate
analytical expressions for the mean and variance of the stationary distribution of the resulting process for
particular examples of interventions.

2 Causal interpretation of stochastic differential equations

Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual conditions, see [10] for the
definition of this and other notions related to continuous-time stochastic processes. Let Z be a d-dimensional
semimartingale and assume that a : Rp →M(p, d) is a Lipschitz mapping, where M(p, d) denotes the space
of real p× d matrices. Consider the stochastic differential equation (SDE)

Xi
t = xi0 +

d∑
j=1

∫ t

0

aij(Xs−) dZjs , i ≤ p. (1)

By the Lipschitz property of a, it holds by Theorem V.7 of [10] that there exists a pathwisely unique solution
to (1). The following definition yields a causal interpretation of (1) based on simple substitution and inspired
by ideas outlined in Section 4.1 of [1].
∗e-mail: alexander@math.ku.dk
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Definition 2.1. Consider some m ≤ p and c ∈ R. The (p − 1)-dimensional intervened SDE arising from
the intervention Xm := c is defined to be

U it = xi0 +

d∑
j=1

∫ t

0

bij(Us−) dZjs for i ≤ p with i 6= m, (2)

where bij(y1, . . . , ym−1, ym+1, . . . , yp) = aij(y1, . . . , c, . . . , yp), and the c is on the m’th coordinate. Let-
ting U be the unique solution to the SDE and defining Y = (U1, . . . , Um−1, c, Um+1, . . . , Up), we refer to
Y as the intervened process and write (X|Xm := c) for Y .

By Theorem V.16 and Theorem V.5 of [10], the solutions to both (1) and (2) may be approximated by
the Euler schemes for their respective SDEs. Making these approximations and applying Pearl’s notion of
intervention in an appropriate sense, see [8], we may interpret Definition 2.1 as intervening in the system
(1) under the assumption that the driving semimartingales Z1, . . . , Zd are noise processes unaffected by
interventions, while the processes X1, . . . , Xp are affected by interventions. Note that the operation of
making an intervention takes a p-dimensional SDE as its input and yields a (p − 1)-dimensional SDE as
its output, and this operation is crucially dependent on the coefficients in the SDE: These coefficients in a
sense corresponds to the directed acyclic graphs of [8]. A major benefit of causality in systems such as (1) as
compared to the theory of [8] is the ability to capture feedback systems and interventions in such feedback
systems.
As the solutions to (1) and (2) are defined on the same probability space, we may even consider the process
Y − X , where Y = (X|Xm := c), allowing us to calculate for example the variance of the effect of the
intervention. As Y and X are never observed simultaneously in practice, however, we will concentrate on
analyzing the differences between the laws of Y and X separately.
Recent developments related to causality for continuous-time processes have been focused on weak con-
ditional local independence (WCLI), see for example [4]. A link between our notion of intervention and
WCLI is the following: IfXi is equal to the intervened process (Xi|Xm := c) for some c, thenXi is WCLI
of Xm.

3 Intervention in Ornstein-Uhlenbeck SDEs

Recall that for an F0 measurable variable X0 and for A ∈ Rp, B ∈M(p, p) and σ ∈M(p, d), the Ornstein-
Uhlenbeck SDE with initial value X0, mean reversion level A, mean reversion speed B, diffusion matrix σ
and d-dimensional driving noise is

Xt = X0 +

∫ t

0

B(Xs −A) ds+ σWt, (3)

where W is a d-dimensional (Ft) Brownian motion, see Section II.72 of [11]. The unique solution to this
equation isXt = exp(tB)(X0−

∫ t
0

exp(−sB)BA ds+
∫ t

0
exp(−sB)σ dWs) where the matrix exponential

is defined by exp(A) =
∑∞
n=0A

n/n!. This is a Gaussian homogeneous Markov process with continuous
sample paths. The following lemma shows that making an intervention in an Ornstein-Uhlenbeck SDE
yields an SDE whose nontrivial coordinates solve another Ornstein-Uhlenbeck SDE.

Lemma 3.1. Consider the Ornstein-Uhlenbeck SDE (3) with initial value x0. Fix m ≤ p and c ∈ R, and
let X be the unique solution to (3). Let Y = (X|Xm := c) and let Y −m be the p− 1 dimensional process
obtained by removing the m’th coordinate from Y . Let B̃ be the submatrix of B obtained by removing the
m’th row and column of B, and assume that B̃ is invertible. Then Y −m solves

Y −mt = y0 +

∫ t

0

B̃(Y −ms − Ã) ds+ σ̃Wt, (4)
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where y0 is obtained by removing the m’th coordinate from x0, σ̃ is obtained by removing the m’th row of
σ and Ã = α − B̃−1β, where α and β are obtained by removing the m’th coordinate from A and from the
vector whose i’th component is bim(c − am), respectively, where bim is the entry corresponding to the i’th
row and the m’th column of B, and am is the m’th element of A.

Proof. By Definition 2.1, Y it = y0 +
∫ t

0
bim(c− am) +

∑
j 6=m bij(Y

j
s − aj) ds+

∑p
j=1 σijW

j
t for i 6= m.

Note that for any vector y, the system of equations in ã

bim(c− am) +
∑
j 6=m

bij(yj − aj) =
∑
j 6=m

bij(yj − ãj) for i 6= m, (5)

is equivalent to the system of equations

∑
j 6=m

bij ãj =

∑
j 6=m

bijaj

− bim(c− am) for i 6= m, (6)

which, since we have assumed B̃ to be invertible, has the unique solution Ã = B̃−1(B̃α−β) = α− B̃−1β.
For i 6= m, we then obtain Y it = y0 +

∫ t
0

∑
j 6=m bij(Y

j
s − ãj) ds+

∑p
j=1 σijW

j
t , proving the result. 2

Recall that a principal submatrix of a matrix is a submatrix with the same rows and columns removed. In
words, Lemma 3.1 states that if a particular principal submatrix B̃ of the mean reversion speed is invertible,
then making the intervention Xm := c in an Ornstein-Uhlenbeck SDE results in a new Ornstein-Uhlenbeck
SDE with mean reversion speed B̃ and modified mean reversion level involving the inverse of B̃. Now
assume that an Ornstein-Uhlenbeck SDE is given such that the solution has a stationary initial distribu-
tion. A natural question to ask is what interventions will yield intervened processes where stationary initial
distributions also exist. In the following, we consider this question.
Recall that a square matrix is called stable if its eigenvalues have negative real parts and semistable if its
eigenvalues have nonpositive real parts, see [2]. Theorem 4.1 of [12] yields necessary and sufficient criteria
for the existence of a stationary probability measure for the solution of (3). One criterion is expressed in
terms of the controllability subspace of of the matrix pair (B, σ), which is the span of the columns in the
matrices σ,Bσ, . . . , Bp−1σ. In the case where σ has full column span, meaning that the columns of σ span
all of Rp, the controllability subspace is all of Rp, and Theorem 4.1 of [12] shows that the existence of a
stationary probability measure is equivalent to B being stable. The case where σ is not required to have full
column span is more involved.
In the following, we will restrict our attention to Ornstein-Uhlenbeck processes with σ having full column
span. By Theorem 4.1 of [12], it then holds that there exists a stationary distribution if and only if B is
stable. Furthermore, applying Theorem 2.4 and Theorem 2.12 of [7], it holds in the affirmative case that
the stationary distribution is the normal distribution with mean µ and variance Γ solving Bµ = BA and
σσt + BΓ + ΓBt = 0. Note that as B is stable, zero is not an eigenvalue of B, thus B is invertible and
µ = A. Also, stability of B yields that Γ =

∫∞
0
esBσσtesB

t

ds. For the (p − 1)-dimensional Ornstein-
Uhlenbeck process resulting from an intervention according to Lemma 3.1, the diffusion matrix σ̃ is obtained
by removing the m’th row of σ. As the columns of σ span Rp, the columns of σ̃ span Rp−1. Therefore,
it also holds for the intervened process that there exists a stationary distribution if and only if the mean
reversion speed is stable. We conclude that for diffusion matrices with full column span, the existence of
stationary distributions for both the original and the intervened SDE is determined solely by stability of the
mean reversion speed matrix B and corresponding principal submatrices.
Consider a stable matrix B. It then holds that if all principal submatrices of B are stable, all interventions
will preseve stability of the system. We are thus lead to the question of when a principal submatrix of a
matrix is stable. In general, stability or semistability does not lead to stability or semistability of principal
submatrices. There are, however, classes of matrices satisfying that all principal submatrices are stable.
For example, by the inclusion principle for symmetric matrices, see Theorem 4.3.15 of [6], it follows that a
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principal submatrix of any symmetric stable matrix again is stable. In general, though, it is difficult to ensure
that all principal submatrices are stable. However, there are criteria ensuring that all principal submatices
are semistable. For example, Lemma 2.4 of [5] shows that if B is stable and sign symmetric, then all
principal submatrices of B are semistable. Here, sign symmetry is a somewhat involved matrix criterion,
it does however hold that any stable symmtric matrix also is sign symmetric. Furthermore, by Theorem 1
of [2], either of the following three properties are also sufficient for having all principal submatrices being
semistable: that A −D is stable for all nonnegative diagonal D, that DA is stable for all positive diagonal
D, or that there is positive diagonal D such that AD +DAt is negative definite.

4 An example of a particular intervention
Consider now a three-dimensional Ornstein-Uhlenbeck process X with σ being the identity matrix of order
three and upper diagonal mean reversion speed matrix B, and assume that the diagonal elements of B all
are negative. As the diagonal elements of B in this case also are the eigenvalues, B and all of its principal
submatrices are then stable. The interpretation of having B upper diagonal is that the levels of both X1, X2

and X3 directly influence the average change in X1, while only the levels of X2 and X3 directly influence
the average change in X2 and only X3 directly influences the average change in X3.
We will investigate the details of what happens to the system when making the interventions X2 := c or
X3 := c. To this end, we calculate the stationary mean and variance, that is, the mean and variance in
the stationary distribution, for each of the intervened processes. Consider first the case of the intervention
X2 := c. Let µ and Γ denote the mean and variance in the stationary distribution after intervention. Applying
Lemma 3.1, the result of making this intervention is an Ornstein-Uhlenbeck process with mean reversion
speed and mean reversion level[

b11 b13

0 b33

]
and

[
a1

a3

]
−
[
b11 b13

0 b33

]−1 [
b12(c− a2)

0

]
. (7)

By explicit calculations, we obtain

µ =

[
a1 − b12

b11
(c− a2)

a3

]
and Γ =

[
− 1

2b11
− b213

2b11b33(b11+b33)
b13

2b33(b11+b33)
b13

2b33(b11+b33) − 1
2b33

]
. (8)

Next, considering the intervention X3 := c, we let ν and Σ denote the mean and variance in the stationary
distribution. By Lemma 3.1, the result of making this intervention is an Ornstein-Uhlenbeck process with
mean reversion speed and mean reversion level[

b11 b12

0 b22

]
and

[
a1

a2

]
−
[
b11 b12

0 b22

]−1 [
b13(c− a3)
b23(c− a3)

]
, (9)

yielding by calculations similar to the previous case that

ν =

[
a1 −

(
b13
b11
− b12b23

b11b22

)
(c− a3)

a2 − b23
b22

(c− a3)

]
and Σ =

[
− 1

2b11
− b212

2b11b22(b11+b22)
b12

2b22(b11+b22)
b12

2b22(b11+b22) − 1
2b22

]
. (10)

We now interpret these results. In the original system, all of X1, X2 and X3 negatively influenced them-
selves, and in addition to this, X2 influenced X1 and X3 influenced X1 both directly and through its
influence on X2. Based on this, we would expect that making the intervention X2 := c, the stationary mean
of X3 would not be changed, while the stationary mean of X1 would change, depending on the level of
influence b12 ofX2 onX1. This is what we see in (8). When making the interventionX3 := c, however, we
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obtain a change in the stationary mean of X1 based both on the direct influence of X3 on X1, depending on
b13, but also on the indirect influence ofX3 onX1 throughX2, depending also on b23 and b12. Furthermore,
the stationary mean of X2 also changes. This is what we see in (10).
As for the stationary variance, the changes resulting from interventions are in both cases of the same type,
both independent of c. This implies that while we in most cases will be able to obtain any stationary mean
for, say, X1, by picking c suitably, the stationary variance is influenced only by the parts of the system for
which the interventions are made. Furthermore, by considering explicit formulas for the stationary variance
in the original system, it may be seen that for example positive covariances may turn negative and vice versa
when making interventions.

Acknowledgements: The development of the notion of intervention for SDEs is joint work with my thesis
advisor, Niels Richard Hansen, whom I also thank for valuable discussions and advice.
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Bayesian multiscale analysis of images
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Abstract
Two novel multiscale methods for digital images are proposed. The first method detects differences between
two images obtained from the same object at two different instants of time. It detects both small scale,
sharp changes and large scale, average changes. The second method extracts features that differ in intensity
from their surroundings and produces a multiresolution analysis of an image as a sum of scale-dependent
components.
As images are usually noisy, Bayesian inference is used to separate real differences and features from arte-
facts caused by random noise. The use of the Bayesian paradigm allows the use of various noise types,
incorporation of expert knowledge about the images at hand and facilitates analysis of non-linear transfor-
mation of images.
The methods are instants of SiZer (Significant zero crossings of derivatives) methodology that was originally
considered for one-dimensional nonparametric probability density estimation and curve fitting [1, 2]. The
new methods, iBSiZer (Bayesian SiZer for images) and MRBSiZer (Multiresolution Bayesian SiZer), were
originally proposed in [7] and [8], respectively.

Keywords: Bayesian methods, Scale space, Image analysis, SiZer
AMS subject classifications: 62M40

1 Introduction
When two images have been obtained from the same object at two different times, the changed areas can in
principle be detected from the pixelwise difference image. However, as images usually contain noise, statis-
tical methods are needed to separate the real changes from noise artefacts. In particular, large areas where
the pixel intensity has changed only slightly may easily be masked by noise. If such areas are smoothed, the
pixelwise noise variance can be reduced making the underlying signal easier to detect. Special challenges
arise when one wants to detect changes in multispectral images, such as in the case of the Landsat ETM+
satellite. To facilitate change detection, the multidimensional data are often first transformed to make it one
dimensional. The noise in the transformed image may then have a complicated structure making statistical
inference challenging.
We propose a statistical method for the analysis of the transformed images that also allows detection of
changes in many spatial scales. The changes are detected using Bayesian inference that facilitates the incor-
poration of expert information about the images at hand. Analysis in multiple spatial scales is achieved by
employing many different smoothing levels.
The methods have their origin in SiZer technology first introduced in [1, 2] for the purposes of one-
dimensional nonparametric probability density estimation and curve fitting. Since then it has been developed
into various directions including Bayesian approaches, analysis of two-dimensional densities and images;
see the review articles [5] and [6] and the references therein. The change detection method discussed here is
called Bayesian SiZer for images, or iBSiZer [7].
∗Corresponding author, e-mail: leena.pasanen@oulu.fi
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Another closely related problem is the detection of image features that differ in intensity values from their
surroundings. To solve this problem, we decompose the image into additive components that corresponds to
features in different spatial scales. The resulting method is referred to as Multiresolution Bayesian SiZer, or
MRBSiZer [8].
The Bayesian framework is presented in Section 2, the iBSiZer and MRBSiZer methods are outlined in
Section 3, and example images are analyzed in Section 4.

2 Bayesian framework
A grayscale digital image can be considered as an M × N array of real numbers xij , but in mathematical
derivations we treat it is as a vector x = [x1, . . . , xn] ∈ Rn, n = NM . Landsat ETM+ satellite images
consist of eight image bands, each representing a different wavelength of light. We vectorize each M ×N
band image and then combine the bands corresponding to the two instants of time considered into one 16n×1
vector x = [xT11, . . . ,x

T
18,x

T
21, . . . ,x

T
28]T , where xij is the band j at time i.

An observed image y, satellite or otherwise, is modeled as

y = x + ε, (1)

where, x is the true image and ε is the corrupting noise. The posterior distribution of x given y is then

p(x|y) = p(y|x)p(x)
p(y) ∝ p(y|x)p(x), (2)

where p(y|x) is the likelihood of y given x and p(x) is the prior distribution of x. The noise is assumed to
have a Gaussian distribution ε ∼ N(0,Σ) and hence p(y|x) is a Gaussian density.
As the prior distribution of x, we use a Gaussian smoothing prior that penalizes for image roughness as
measured by the second differences of neighboring pixel intensities [7]. For Landsat ETM+ images, the
prior models the prior temporal dependence in the images corresponding to the same band as well as the
smoothness of each band image xij . This prior model for Landsat ETM+ images is discussed in more detail
in [9].
By substituting the Gaussian likelihood and the Gaussian smoothing prior one obtains a multivariate Gaus-
sian posterior [7]. If the values of the parameters in prior or likelihood are unknown, one can use the
empirical Bayes approach that estimates them from the data or alternatively use the fully Bayesian approach
that treats them as random variables (see [7] and [9]).

3 Scale space analysis
IBSiZer detects credible changes between two images in many scales. The scales are defined by applying
various degrees of smoothing to the images. However, instead of using the smooths of the observed im-
ages directly, change detection is based on the posterior distribution of the smooths of the true underlying
difference image.
We use the roughness penalty smoother

Sλ = (I + λQ)−1,

where Q = CTC, and C is the matrix that defines the second differences of neighboring pixels and I is the
identity matrix. The parameter λ controls the smoothness of the smooth Sλx and we require that as λ→∞,
Sλx approaches the mean of x; see [7] for details.
Change detection is performed in three steps. The first step is to obtain the posterior distribution of the true
underlying difference image. When changes are detected from Landsat ETM+ satellite images, the image
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dimensionality is first reduced using a transformation t so that instead of having a vector of length 16n to
analyze, a vector of length n is analyzed. Examples of such a transformation are for example the temporal
difference of vegetation indexes or the temporal difference of a certain image band. Different transformations
give different information about the change and therefore, the transformation t needs to be chosen carefully
to match the change type of interest. The likelihood function p(t(y)|t(x)) can then be complex, whereas
the likelihood function p(y|x) is simply a multivariate Gaussian. It is also easier to formulate one’s prior
knowledge about the images in terms of x rather than in terms of t(x). Especially, the dependency between
bands on different time points can be taken into account in the prior of x. Therefore, instead of p(t(x)|t(y)),
we consider p(t(x)|y). For digital grayscale images, the transformation t can be simply the difference of
images x1 − x2. The posterior distribution p(t(x)|y) can be analyzed by first drawing a sample from the
posterior distribution (2) and then transforming each sampled image by t.
The second step is to obtain the posterior distribution of the smooths p(Sλt(x)|y). In practice, this posterior
is approximated by smoothing the images sampled in the first step. The third step is to use the smoothed
sample images to detect the pixels that have high enough posterior probability to differ credibly from zero.
The inference here is simultaneous over all pixels of the image and we use the “simultaneous credible
intervals” (CI) method that was first proposed for one dimensional data in [3] and then extended for digital
images in [8].
MRBSiZer considers a single image and aims to detect areas that differ in intensity from their neighborhood.
This is accomplished by employing differences of image smooths. In the following, x can represent a
grayscale image, a difference image or a transformed image.
Let 0 = λ1 < λ2 < · · · < λL−1 < λL =∞ be a set of smoothing levels. Then

x =
∑L−1

i=1
(Sλi − Sλi+1

)x + SλLx ≡
∑L−1

i=1
zi + zL, (3)

where zi = (Sλi − Sλi+1)x for i = 1, . . . , L − 1, and zL = S∞x. Here zi for i = 1, . . . , L − 1 is the
difference between two consecutive smooths and is referred to as the ith “detail” of the decomposition (3).
It can be interpreted as the detail lost when smoothing is increased from λi to λi+1.
As in iBSiZer, the first step is to obtain the posterior distribution of x given the noisy data y. The second
step is to obtain the posterior distributions of the differences of smooths zi = (Sλi − Sλi+1

)x using the
sample generated in the first step. Finally, the credibly nonzero image parts of each zi are detected as in
iBSiZer.

4 Experiments
To illustrate the idea of iBSiZer, we will first detect changes in a pair of images based on a real Landsat
ETM+ satellite image and manually constructed changes, using the difference of their NDVI (Normalized
difference vegetation index) images. For a pair of satellite images represented by v = [vT11, . . . ,v

T
28]T the

NDVI difference is computed as
Nv ≡ v24−v23

v24+v23
− v14−v13

v14+v13
.

The true and the noisy NDVI difference images are denoted by Nx and Ny, respectively. The test image
pair is constructed from a 176 × 165 subimage of a full Landsat ETM+ satellite image [7]. The images
were first smoothed to obtain x13 and x14. The images x23 and x24 were then obtained by making manually
changes to x13 and x14. Finally, the “observed images” y13,y14,y23, and y24 were constructed by adding
Gaussian iid noise with variance 16 to each band. The noisy band images, the corresponding NDVI images,
the NDVI-difference of the true and the noisy images are presented in Figure 1.
Assuming the model (1), we use a Gaussian smoothing prior for x where, in addition to spatial dependence,
also temporal dependence is modeled; see [9] for more details. The resulting posterior mean, and the credi-
bility maps with smoothing levels [0, 1, 100] are displayed in Figure 1. The two smallest scale maps detect
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the small changed areas with high absolute intensity. The large positive area in the lower right corner is de-
tected in the larger scale. Note that none of the maps alone would reveal all the interesting features. If simple
thresholding would be applied to the noisy NDVI-difference image, the true changes would be masked by
noise [9].
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Figure 1: A partly artificially constructed pair of satellite images. 1st row: Noisy band images. 2nd row:
Noisy NDVI-images, the true and the observed difference of NDVI-images. 3th row: Posterior means of
SλNx, λ = 0, 1, 100. 4th row: Corresponding iBSiZer-maps.

Next, MRBSiZer is used to analyze predicted global climate change between 1980-2000 (present) and 2080-
2100 (future). We had available a posterior sample of climate change fields from a hierarchical Bayesian
model that combined predictions of several atmosphere-ocean general circulation models. For the details
of the statistical model employed, see [4]. The mean of the sample is presented in the first row of Figure
2. The rest of the rows present the posterior means of the multiresolution details zi (on the left) and the
corresponding MRBSiZer maps (on the right). The smoother used in the scale space analysis operates
on a sphere and is defined in [8]. The four rows represent a multiresolution decomposition of predicted
global temperature rise into an overall rising mean (bottom panel), a north-south gradient that accounts for
the bigger temperature increase in the northern hemisphere (second panel from the bottom) and a pattern of
more complex small scale change that concentrates in the northernmost latitudes (the two uppermost panels).
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Figure 2: Scale space multiresolution analysis of predicted global climate chance. 1st row: Mean global
temperature change field. Rows 2-4: MRBSiZer analysis of temperature change. The left hand column
presents the multiresolution detail posterior means and the right hand column shows the corresponding
credibility maps. Blue and red corresponds to negative (colder) and positive (warmer) changes respectively.
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Abstract
We use a recently introduced framework for multiresolution analysis on the symmetric group to predict
rankings. Viewing preferences as sets of permutations, ranking prediction implies to handle probability
distributions on the symmetric group, which usually leads to intractable storage or computations. We define
a new smoothing technique based on wavelet decomposition that allows to obtain sparse representations
for a large class of probability distributions. We show that in many practical cases, our method performs
efficiently, in terms of storage and from a computational cost perspective as well.

Keywords: Ranking, Multiresolution analysis, Wavelets, Statistical estimation, Pairwise preferences.
AMS subject classifications: 62G05, 43A65.

1 Introduction
Ranking problems have been the subject of much attention these last few years in the machine-learning
literature. The need to deal with orderings of items has indeed found more and more applications in modern
technological devices such as recommendation systems or search engines, where they model for example
preferences on movies or products, relevance of websites to a query, closeness of a relationship in a social
network or the order of the words in automatic translation. They all fit in the following general model: the n
items are labeled 1, 2, ..., n, and each ordering is seen as a permutation σ over the set {1, ..., n}, where σ(i)
is the rank of the object i. Learning and prediction of rankings is then made through probabilistic modeling
and statistical estimation on the set Sn of all the permutations of the n items, the symmetric group. The
latter’s cardinal, equal to n!, rapidly exploding when n increases, any naive approach leads to intractable
computations and even the simple storage of a probability vector becomes unfeasible as soon as n ≥ 15,
while the considered applications usually require to deal with n ≥ 105 or more.
Hence, efficient inference methods necessarily require smoothing techniques so as to produce estimators
with good statistical properties and compact representation both at the same time. Inspired by the remarkable
achievements of traditional wavelet methods in signal and image processing, we develop the framework for
multiresolution analysis on the symmetric group recently introduced in [3] to perform sparse estimation of
probability distribution on Sn.

2 Mathematical setting and problem statement
We consider the problem of recovering a probability distribution p on Sn from a set of observations. Let
L(Sn) = {f : Sn → R}, p ∈ L(Sn) is such that for all π ∈ Sn, p(π) ≥ 0, and

∑
π∈Sn p(π) = 1.

It typically models the variability of (a community of) customers complete preferences on the n items: if
σ is a random permutation of law p, then the probability that a customer ranks the n items according to
∗e-mail: eric.sibony@telecom-paristech.fr
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a given ranking π ∈ Sn is P [σ = π] = p(π). More generally, for any subset S ⊂ Sn, P [σ ∈ S] =∑
π∈S p(π) = 〈p,1S〉, where 1S denotes the indicative function of S and 〈., .〉 is the usual inner product

on L(Sn). The observations take the form of subsets of Sn, modeling the preferences expressed by the
customers: for instance, if a customer prefers the item i to the item j, the corresponding observation is the
set of all orderings that rank i before j, i.e. {π ∈ Sn | σ(i) < σ(j)}, denoted by abuse {i ≺ j}. Any type
of observation fits in this model (see [6]).
In most cases of interest, each customer only expresses his preferences on a small subset of items, leading
to very restricted observations and thus very limited information. The problem presents therefore three
main challenges, in providing an estimator that has good statistical performance even with very limited
information, compact representation and effective computation.
In this paper, we restrict ourselves to the case where the observations are pairwise comparisons, i.e. of the
form {i ≺ j} with i 6= j. Thus we assume that we are given T pairwise comparisons i1 ≺ j1, ..., iT ≺ jT
drawn IID from an observation process defined as follows:

• each pair {it, jt} is drawn IID from a probability distribution µ on the pairs among {1, ..., n} that is
assumed to be known;

• knowing that {it, jt} = {i, j}, the comparison is i ≺ j with probability
〈
p,1{i≺j}

〉
=: pi≺j and

i � j with probability pi�j = 1− pi≺j .

In this setting, the empirical estimator is defined as the average of all the observations normalized to be a
probability distribution:

p̂ =
1

T

T∑
t=1

2

n!
1{it≺jt}. (1)

Let M be the linear operator of L(Sn) defined by

Mf =
2

n!

∑
1≤i<j≤n

µ ({i, j})
[〈
f,1{i≺j}

〉
1{i≺j} +

〈
f,1{i�j}

〉
1{i�j}

]
. (2)

Then the empirical estimator is a statistical approximation of Mp with E
[
‖p̂−Mp‖22

]
≤ 2/(T.n!) where

‖.‖2 denotes the usual l2 norm on L(Sn) (the proof is straightforward), and the problem can therefore be
seen as an inverse problem, where the goal is to recover p from a noisy version ofMp. Since for any function
f ∈ L(Sn), denoting f = 1

n!

∑
π∈Sn f(π),

Mf = f 1Sn +
2

n!

∑
1≤i<j≤n

µ ({i, j})
〈
f − f,1{i≺j}

〉 [
1{i≺j} − 1{i�j}

]
,

M has rank at most
(
n
2

)
+ 1. Hence, recovering p comes down to approximately solve a linear system

of n(n − 1)/2 + 1 equations with n! unknowns. The solution is far from being unique and the problem
requires structural assumptions on p to be resolved. For instance, an assumption of sparsity is made in [2],
but empirical evidence show that probability distributions are rather diffuse on Sn. However, we claim that
multiresolution analysis allows to build wavelet bases in which a large class of probability distributions have
a sparse decomposition, and therefore that p can be recovered by the following optimization problem :

min
q∈L(Sn)

‖q‖ψ,0 subject to ‖Mq − p̂‖22 ≤
2

Tn!
, (3)

where ‖q‖ψ,0 is the number of coefficients in the decomposition of q in a wavelet basis defined in the sequel.
The solution to this problem provides furthermore an estimator with compact representation.
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3 Multiresolution and wavelet analysis on Sn

The space of real valued functions on Sn, L(Sn), is equipped with the canonical Dirac basis {δσ}σ∈Sn ,
where δσ(π) = 1 if π = σ and 0 otherwise. For a function f ∈ L(Sn), the decomposition

f =
∑
σ∈Sn

f(σ)δσ (4)

shall be referred to as the “spatial” decomposition.

3.1 Fourier analysis on Sn

Equipped with the composition operator ◦, Sn is a non-commutative group. The translation operator on
L(Sn) related to a permutation τ ∈ Sn is defined by Tτf : π 7→ f(τ−1 ◦ π). It would be expected
that a Fourier basis of L(Sn) would be an orthonormal basis in which all the operators Tτ are diagonal.
Unfortunately, since Sn is not commutative, the translation operators do not commute and such a basis
cannot exist. However, for any (τ, σ) ∈ S2

n, we have Tτ ◦ Tσ = Tτ◦σ , which means that the mapping
τ ∈ Sn 7→ Tτ is a representation of the group Sn (it is actually the left regular representation of Sn).
Therefore classic results in group representation theory guarantee the existence of an orthonormal basis in
which all the translation operators are block diagonal, with the same blocks. One may refer to [1] for further
details. Let us denote by ρλ(σ) the block indexed by λ of the matrix coefficient of Tσ , σ ∈ Sn, in this basis.
The Fourier (matrix) coefficients of any f ∈ L(Sn) are defined by: ∀σ ∈ Sn,

f̂(λ) =
∑
σ∈Sn

f(σ)ρλ(σ) ∈Mdλ(R),

where dλ is the size of the block indexed by λ. By virtue of the inversion formula, the function f can then
be expanded as :

f =
∑
λ

dλ
n!

〈
f̂(λ), ρλ(.)

〉
HS

, (5)

denoting 〈., .〉HS the scalar product on matrices. This expansion shall be referred to as the “spectral” de-
composition.
Decompositions (4) and (5) describe local properties either only in space, or else in frequency solely. Hence,
there is no reason that they would allow sparse representations of functions with spatially varying degrees
of smoothness . This motivates the need for building a basis, which would be localized both in space and
in frequency, such as that proposed in [3]. We now briefly recall the principles underlying its construction
(using slightly different notations).

3.2 The multiscale structure of Sn

As a first go, a multiscale structure on Sn is defined. For 1 ≤ k ≤ n, set Ak = {i = (i1, ..., ik) ∈
{1, ..., n}k | p 6= q ⇒ ip 6= iq} and A0 = {0} by convention. Define the sets A0

0 = Sn, A1
j = {σ ∈

Sn | σ−1(1) = j} for j ∈ {1, . . . , n}, and more generally, for i ∈ Ak and k ∈ {1, ..., n− 1}, consider:

Aki = {σ ∈ Sn | σ−1(1) = i1, . . . , σ
−1(k) = ik}. (6)

Observe that, for all k ∈ {0, . . . , n − 1}, |Aki | = (n − k)! (in particular for k = n − 1, Aki is a singleton)
and that

(
{Aki }i∈Ak

)
06k6n−1

is a sequence of nested partitions of Sn :

Sn =
⋃
i∈Ak A

k
i for all k ∈ {0, ..., n− 1},

Aki =
⋃
j 6∈iA

k+1
(i,j) for all k ∈ {0, ..., n− 1} and i ∈ Ak,
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where j 6∈ i abusively means that j ∈ {1, ..., n} \ {i1, ..., ik}.
Beyond the multiscale structure thus defined for Sn, notice that the Aki ’s interact well with the group struc-
ture of Sn. Indeed, identifying the isomorphic groups Sn−k and {σ ∈ Sn | σ(1) = 1, ..., σ(k) = k},
one may write Aki = {σ′ ◦ πi | σ′ ∈ Sn−k}, where πi is any permutation in Sn such that π−1

i (1) =
i1, . . . , π

−1
i (k) = ik. This means that Aki is a right coset of Sn−k in Sn, which is denoted by Aki =

Sn−kπi. Therefore, the sequence of nested partitions is directly related to the embedding of subgroups
S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn. This key point allow the basis defined below to enjoy good localization proper-
ties in frequency.

3.3 Multiresolution analysis on Sn

The definition of a multiresolution analysis on the symmetric group given in [3] is based on the multiscale
tree-structure of Sn described above. It involves the projectors Pi : f ∈ L(Sn) 7→ f1Aki , i ∈ Aki and
k ∈ {0, . . . , n− 1}.
Definition 3.1. A sequence of subspaces V 0 ⊆ V 1 ⊆ ... ⊆ V n−1 = L(Sn) forms a coset based multireso-
lution analysis (CMRA) for Sn if the following properties are satisfied.

A. For any f ∈ V k and τ ∈ Sn, Tτf ∈ V k.

B. If f ∈ V k, then Pif ∈ V k+1 for any i ∈ Ak+1.

C. If g ∈ V k+1, then for any i ∈ Ak+1 there exist f ∈ V k such that Pif = g.

We refer to [3] for a detailed description of a general method to construct a CMRA for Sn, starting from
any given subspace V 0. In this paper, focus is on the simple, but sufficiently rich, case where V 0 = {f ∈
L(Sn) : f constant on Sn}. It yields the subspaces :

V k = {f constant on each Aki , i ∈ Ak}, k ∈ {1, . . . , n− 1}.

3.4 Wavelets on Sn

Starting from a multiresolution analysis
(
V k
)

1≤k<n, the general construction scheme for wavelet bases was
formalized in [4]. The principle is to define W k+1 as the orthogonal of V k in V k+1 and to consider the
decomposition:

V N = V 0
⊕[

n−1⊕
k=1

W k

]
.

Then one has to define orthonormal bases for V 0 and the W k, that interact well with the multiresolution
structure. For the considered case of piecewise constant functions, the associated wavelet bases are similar
to Haar bases, and have simple expressions, such as:

φ =
1√
n!

1Sn and ψki,m =
1√

(n− k)!

1√
m(m+ 1)

[
m∑
t=1

1Aki,jt
−m1Aki,jm+1

]
, (7)

for 1 6 k 6 n− 1, i ∈ Ak−1 and 1 6 m 6 n− k, with {j1 6 ... 6 jn−k+1} = {1, ..., n} \ {i1, ..., ik−1}.
Any function f ∈ L(Sn) thus admits the expansion:

f = 〈f, φ〉φ+

n−1∑
k=1

∑
i∈Ak−1

n−k∑
m=1

〈
f, ψki,m

〉
ψki,m, (8)

referred to as the “spatial-frequency” decomposition.
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4 Sparse estimation in the wavelet basis

For a function f ∈ L(Sn), let Ψf denote its wavelet transform in the basis 7, i.e. the collection of its
wavelet coefficients: Ψf = {〈f, φ〉}∪{

〈
f, ψki,m

〉
| 1 6 k 6 n−1, i ∈ Ak−1, 1 6 m 6 n−k}. The initial

inverse problem can now be written as:

min
q∈L(Sn)

‖Ψq‖0 subject to ‖Mq − p̂‖22 ≤
2

Tn!
. (9)

This type of problem has been the subject of much attention these last few years, and numerous methods have
been proposed to solve it with their theoretical guarantees, one the most famous being the l1 Lagrangian pur-
suit (see [5] for the details). Let Θ denote the set of indexes of the wavelet basis, Θ = {0}∪{(k, i,m) | 1 6
k 6 n− 1, i ∈ Ak−1, 1 6 m 6 n− k}, where 0 is the index of φ. The principle is to compute the estimator
defined by:

p̃ =
∑
θ∈Θ

cθ
ψθ

‖Mψθ‖2
with c = argmin

c∈Rn!

1

2

∣∣∣∣∣∣p̂−∑
θ∈Θ

cθ
Mψθ
‖Mψθ‖2

∣∣∣∣∣∣2
2

+ T‖c‖1, (10)

where T is a Lagrangian multiplier to be adjusted. Let p =
∑
θ∈Θ∗ 〈p, ψθ〉ψθ be the decomposition of p in

the wavelet basis 7, where Θ∗ is the support of Ψp. The theory of sparse approximation ensures that under
sufficient “incoherence” conditions of {Mψθ/‖Mψθ‖}θ∈Θ∗ , the estimator p̃ is well-defined and converges
toward the solution of problem 9, i.e. p.
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Constructing hierarchical copulas using the Kendall distribution
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Abstract
While there is substantial need for dependence models in higher dimensions, most existing models are rather
restrictive and barely balance parsimony and flexibility. The class of hierarchical Kendall copulas is pro-
posed as a new approach to these problems. By aggregating dependence information of non-overlapping
groups of variables in different hierarchical levels using the Kendall distribution function, hierarchical
Kendall copulas provide a new and attractive option to model dependence patterns between large numbers
of variables.

Keywords: multivariate copula, hierarchical copula, Kendall distribution function
AMS subject classifications: 62H20

1 Introduction
The statistical modeling of dependence has made significant progress in the last years. This is mainly due to
the appealing copula approach. According to the famous theorem by Sklar [9], every n-dimensional distribu-
tion function can be expressed in terms of its univariate marginal distribution functions and an n-dimensional
copula, which is a multivariate distribution function on [0, 1]n with uniform marginal distribution functions.
Many of the standard, and also of the newly proposed, copula models however turn out to be rather restrictive
in higher dimensions and barely balance parsimony and flexibility. Grouping variables, for instance by
industry sectors or nationality, is therefore a common procedure to approach such problems. Examples of
such copula models are the grouped Student’s t copula by [5], elliptical copulas with clustered correlation
matrix and hierarchical Archimedean copulas (see, e.g., [7]).
To overcome limitations of these models, we introduce the new class of hierarchical Kendall copulas as a
flexible, but yet parsimonious dependence model (see [2]). It is built up by copulas for non-overlapping
groups (clusters) of variables in different hierarchical levels. Dependence information of the clusters is
aggregated using the Kendall distribution function, which is the multivariate analog of the probability inte-
gral transform for univariate random variables. The model does not restrict the choice of copulas and their
parameters, so that hierarchical Kendall copulas provide a new and attractive option to model dependence
patterns between large numbers of variables.
This paper presents main results of [2, 3] and shows how hierarchical Kendall copulas can be used to conduct
systemic risk stress testing exercises—an important issue in the finance and insurance sectors today.

∗e-mail: brechmann@ma.tum.de
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2 Hierarchical Kendall copulas
The hierarchical construction, which we will investigate here, is based on the notion of the Kendall distri-
bution function (see, e.g., [1]). Let U := (U1, ..., Un)′ ∼ C, where C is an n-dimensional copula, then the
Kendall distribution function K is defined as

K(t) := P (C(U) ≤ t), t ∈ [0, 1].

It holds that t ≤ K(t) ≤ 1, for t ∈ [0, 1], as well asK(0−) = 0. We assume here that copulas are absolutely
continuous and possess continuous Kendall distribution functions.
The Kendall distribution function is the multivariate analog of the probability integral transform. More
precisely, it is the univariate distribution function of the random variable Z := C(U), so that K(Z) ∼
U(0, 1). An alternative interpretation is that it describes the distribution of the level sets of a copula, which
are given by

L(z) = {u ∈ [0, 1]d : C(u) = z}, z ∈ (0, 1).

Generally, Kendall distribution functions are not available in closed form. A notable exception are Archimedean
copulas (see [1]).
The idea of our hierarchical dependence model, which we call “hierarchical Kendall copula”, is to aggregate
dependence information of non-overlapping groups of variables (clusters) using the Kendall distribution
function and thus mimic the classical copula approach for univariate margins. Now, let U1, ..., Un ∼ U(0, 1)
and let C0, C1, ..., Cd be copulas of dimensions d, n1, ..., nd, respectively, where ni ≥ 1, i = 1, ..., d, and
n =

∑d
i=1 ni. Further, let K1, ...,Kd denote the Kendall distribution functions corresponding to C1, ..., Cd.

We define mi =
∑i
j=1 nj , i = 1, ..., d, and m0 = 0 as well as Ui := (Umi−1+1, ..., Umi)

′ and Vi :=
Ki(Ci(Ui)) for i = 1, ..., d. Under the assumptions that

A1: U1, ...,Ud are mutually independent conditionally on (V1, ..., Vd)
′, and

A2: the conditional distribution of Ui|(V1, ..., Vd)
′ is the same as the conditional distribution of Ui|Vi for

all i = 1, ..., d,

the random vector (U1, ..., Un)′ is said to be distributed according to the hierarchical Kendall copula CK
with nesting copula C0 and cluster copulas C1, ..., Cd if

A. Ui ∼ Ci ∀i ∈ {1, ..., d},

B. (V1, ..., Vd)
′ ∼ C0.

In contrast to other hierarchical dependence models, this approach allows to combine copulas from different
classes to account for complex dependence patterns. The two-level construction is illustrated in Figure 1. It
can also easily be extended to an arbitrary number of levels (see [2]).
The intuition behind the two assumptions A1 and A2 is that, given the information of the nesting variables
V1, ..., Vd, the clusters are independent of each other and also of other nesting variables, since the dependence
among the clusters is explained through the “representatives” V1, ..., Vd. In other words, V1, ..., Vd can be
interpreted as unobserved factors, whose joint behavior determines the dependence of the different clusters.
In finance, such factors may be, e.g., industry sectors.
We now characterize the hierarchical Kendall copula in terms of its density. Let U = (U1, ..., Un)′ be
distributed according to a hierarchical Kendall copula CK with cluster copulas C1, ..., Cd and nesting copula
C0. Corresponding densities are denoted by c0, c1, ..., cd, respectively. According to [2], it holds that

cK(u) = c0(K1(C1(u1)), ...,Kd(Cd(ud)))

d∏
i=1

ci(ui),
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(V1, ..., Vd)
′ ∼ C0

V1 := K1(C1(U1)) ∼ U(0, 1) V2 := K2(C2(U2)) ∼ U(0, 1) Vd := Kd(Cd(Ud)) ∼ U(0, 1)

U1 := (U1, ..., Um1)
′ ∼ C1 U2 := (Um1+1, ..., Um2)

′ ∼ C2 Ud := (Umd−1+1, ..., Umd
)′ ∼ Cd

· · ·

· · ·

Figure 1: Illustration of the construction of hierarchical Kendall copulas.

where u = (u1, ..., un)′ and ui = (umi−1+1, ..., umi)
′, i = 1, ..., d.

The availability of the density expression then renders feasible maximum likelihood estimation of depen-
dence parameters. Furthermore, it can be shown that the two important special cases of independence as
well as of comonotonicity are hierarchical Kendall copulas, while, in general, dependence between clusters
ranges between these cases and can also be negative.
Sampling from a given hierarchical Kendall copula is however rather challenging. In general, a sample from
a hierarchical Kendall copula can be obtained using the following top-down procedure (see Figure 1).

A. Obtain a sample (v1, ..., vd)
′ from C0.

B. Set zi := K−1
i (vi) for all i = 1, ..., d.

C. Obtain a sample ui from Ui|(Ci(Ui) = zi) for i = 1, ..., d.

D. Return u := (u1, ..., un)′.

The crucial step is the third one. It requires sampling from the distribution of Ui|(Ci(Ui) = zi), that is,
sampling from a multivariate distribution given the level set L(zi) at level zi ∈ (0, 1). In general, no closed-
form solutions are known for this problem and approximate procedures such as rejection sampling have to
be used. However, for Archimedean, Plackett and Archimax copulas, closed-form methods are derived in
[2, 3]. In particular, let U := (U1, ..., Un)′ ∼ C, where C is an n-dimensional Archimedean copula with
generator ϕ (see [8]). It holds then, for all j = 1, ..., n− 1, that

FUj |U1,...,Uj−1,C(U)(u|u1, ..., uj−1, z) =

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)n−j
, (1)

u ∈ (C−1
u1,...,uj−1

(z), 1), where C−1
u1,...,uj−1

(·) is the inverse of

Cu1,...,uj−1
(·) := C(u1, ..., uj−1, ·, 1, ..., 1).

This expression can be used for closed-form conditional inverse sampling.

3 Systemic risk stress testing
In the aftermath of the financial crisis of 2007-2009, the discussion about systemic risk is central in order
to prevent similar crises in the future, and therefore regulators seek to identify systemically important in-
stitutions (see [6]). Systemic importance is closely linked to contagion effects among financial institutions
and hence their interconnectedness. Statistically, this interconnectedness can be expressed and characterized
using suitable dependence models. For this purpose, hierarchical dependence models are particularly useful,
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sample (v2, ..., vd)
′ from

(V2, ..., Vd)
′|(V1 = v1)

v1 := K1(C1(u1)) z2 := K−1
2 (v2) zd := K−1

d (vd)

sample (u2, ..., um1)
′ from

(U2, ..., Um1)
′|(U1 = u1)

sample u2 from
U2|(C2(U2) = z2)

sample ud from
Ud|(Cd(Ud) = zd)

U1 = u1

· · ·

· · ·

Figure 2: Illustration of conditional sampling from hierarchical Kendall copulas.

since different institutions are typically clustered by region or industry sector (banks, insurers, hedge funds,
etc.).
Having identified a network of financial institutions, it can be used for systemic risk assessment and clas-
sification. An important tool for this purpose is stress testing, that is, the analysis of the stability of the
financial system under shocks such as the failure of an institution. The potential impact of such critical
events decisively determines the systemic relevance of an institution.
Now, let X := (X1, ..., Xn)′ be a random vector of risk quantities. Then we are interested in the case
X−k|(Xk = xk), k ∈ {1, ..., n}, where X−k denotes the random vector X with the kth component
removed and the event {Xk = xk} corresponds to a stress situation. For instance, if Xk is the company
value, then a stress situation occurs when xk is very small (near-failure of company k). The conditional
distribution of X−k|(Xk = xk) given the specific underlying dependence model is however typically not
known in closed form. We will therefore derive a conditional simulation algorithm for hierarchical Kendall
copulas, which can be used for scenario analyses.
We set Uj := FXj (Xj) for all j = 1, ..., n, and assume that U := (U1, ..., Un)′ ∼ CK for a hierarchical
Kendall copula CK with cluster copulas C1, ..., Cd and nesting copula C0. Without loss of generality, let
k = 1 and define u1 := FX1

(x1). This means that the stress situation occurs in the first cluster. The
sampling strategy is then as follows:

A. Obtain a sample (u2, ..., um1
)′ from (U2, ..., Um1

)′|(U1 = u1).

B. Set v1 := K1(C1(u1)).

C. Obtain a sample (v2, ..., vd)
′ from (V2, ..., Vd)

′|(V1 = v1).

D. Set zi := K−1
i (vi) for all i = 2, ..., d.

E. Obtain a sample ui from Ui|(Ci(Ui) = zi) for i = 2, ..., d.

F. Return (u2, ..., un)′.

Samples xj , j = 2, ..., d, from X−1|(X1 = x1) are then given by xj := F−1
Xj

(uj). This conditional
sampling procedure for hierarchical Kendall copulas is illustrated in Figure 2. Since the fifth step is as in
the standard sampling approach described above, conditional sampling of hierarchical Kendall copulas boils
down to conditional sampling of the cluster and nesting copulas. While conditional sampling of elliptical
distributions (and copulas) is straightforward and well-known, appropriate strategies for Archimedean and
vine copulas are derived in [4]. In particular, the procedure for Archimedean copulas exploits (1).
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The described conditional sampling approach for hierarchical Kendall copulas then allows to evaluate the
impact of stress events to certain financial institutions to assess their systemic relevance. A case study using
Archimedean, elliptical and vine copulas can be found in [4].
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18TH EUROPEAN YOUNG STATISTICIANS MEETING 89

Discriminating between long-range dependence and non-stationarity
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Abstract
This paper is devoted to the discrimination between a stationary long-range dependent model and a non sta-
tionary process. We develop a nonparametric test for stationarity in the framework of locally stationary long
memory processes which is based on a Kolmogorov-Smirnov type distance between the time varying spec-
tral density and its best approximation through a stationary spectral density. We show that the test statistic
converges to the same Gaussian limit as in the short memory case if the (possibly time varying) long memory
parameter is smaller than 1/4 and justify why the limiting distribution is different if the long memory pa-
rameter exceeds this boundary. Concerning the latter case the novel FARI(∞) bootstrap is introduced which
provides a bootstrap-based test for stationarity that only requires the long memory parameter to be smaller
than 1/2 which is the usual restriction in the framework of long-range dependent time series. Note that the
present paper is a very condensed version of [13] to which we refer for all technical details and simulation
results.

Keywords: testing stationarity, locally stationary process, long memory, integrated periodogram, spectral
density.
AMS subject classifications: 62M10, 62M15, 62G10.

1 Introduction
For many decades, the assumption of second order stationarity has been the dominating paradigm in time
series analysis. It allows for a straightforward implementation of estimation or forecasting techniques, and
therefore a vast amount of literature exists in this framework; see for example [2] for an comprehensive
overview. It is, however, well-known that many processes in the reality change their dependency struc-
ture over time, which yields that the assumption of stationarity becomes problematic in many applications.
Therefore several approaches exist to model time-varying dependencies and one proposal which become
particularly popular throughout the last decade is that of a local stationarity. These kinds of stochastic pro-
cesses were introduced by [3] in the short memory context and extended to the long range dependent case
by [1], [9] and [14].
There exist a vast amount of articles in which tests for stationarity are derived in the framework of local
stationary [see for example [5], [6], [10], [11], [12] or [16]], but in all these articles long-range dependence
is excluded, i.e. these methods cannot be employed for discriminating between long memory and non-
stationarity. Such a discrimination is, however, of great importance, since many effects in the reality can
be both explained by using either a complicated stationary long memory process or a simple non-stationary
short memory model; see for example [8]. The aim of this paper is to fill the just described gap, i.e. to derive
a test for stationarity which works also in the presence of long memory.
In order to achieve this goal, we will construct an estimator for a Kolmogorov-Smirnov-type distance be-
tween the time varying spectral density and its best approximation through a stationary spectral density, and
discuss its asymptotic Gaussianity if the long memory parameter is smaller than 1/4. If this boundary is

∗Corresponding author, e-mail: philip.preuss@ruhr-uni-bochum.de



18TH EUROPEAN YOUNG STATISTICIANS MEETING 90

exceeded, the asymptotics become different. In order to obtain the asymptotic quantiles of our test statistic,
we will then propose a bootstrap procedure which basically works by transforming the data to something
which is ’close’ to short memory and then applying the AR(∞) bootstrap of [7] to the transformed dataset.
Since this corresponds to the case, where an FARIMA(p, d, 0) model is fitted with growing order p, we call
this new procedure the FARI(∞) bootstrap. It turns out that for consistency of this method, we only require
that 1/2 is an upper bound of the long memory parameter.
This paper is organized is follows: In Section 2 we introduce locally stationary long memory processes and
our measure of stationarity. We then construct an estimator for this quantitiy in Section 3 and present our
new bootstrap prceodure in Section 4. As mentioned in the abstract we refer to [13] for all technical details
and a comprehensive simulation sutdy.

2 The framework

2.1 Locally stationary long memory processes
Consider the triangular array Xt,T , t = 1, ..., T , which follows an MA(∞) representation, i.e.

Xt,T =

∞∑
l=0

ψl,t,TZt−l, t = 1, ..., T,

with

sup
t,T

∞∑
l=0

ψ2
l,t,T <∞,

and independent, standard normal distributed innovations Zt. For the time varying coefficents ψl,t,T we
assume that there exist twice continuously differentiable functions ψl : (0, 1]→ R such that

sup
t=1,..,T

|ψl,t,T − ψl(t/T )| ≤ C

T

(
log(l)

l1−D
1{l 6=0} + 1{l=0}

)
, ∀l ∈ N,

holds for some 0 < D < 1/2 and a constant C ∈ R. Concerning the sequence of approximating functions
(ψl(u))l∈N we furthermore assume that the conditions from Assumption 1 in [13] are fulfilled. This ensures
that the time-varying spectral density

f(u, λ) =
1

2π
|
∞∑
l=0

ψl(u) exp(−iλl)|2

behave like a constant times 1/λ2d(u) as λ → 0, where d(u) : (0, 1] → (0, D) is a twice continuously
differentiable function, which is called ’time-varying long memory parameter’ and describes how heavy
current observations are influenced by data observed a long time ago. While a value close to 1/2 indicates a
very strong memory, the closer it is to zero the weaker the dependency becomes.

2.2 Measure of stationarity
In order to obtain a measure of stationarity, we follow [4] and consider a Kolmogorov-Smirnov type distance
between the time varying spectral density f(u, λ) and its approximation through the stationary spectral
density

∫ 1

0
f(u, λ)du, namely

E = sup
(v,ω)∈[0,1]2

|E(v, ω)|,
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where

E(v, ω) :=
1

2π

(∫ v

0

∫ πω

0

f(u, λ)dλdu− v
∫ πω

0

∫ 1

0

f(u, λ)dudλ
)
, (v, ω) ∈ [0, 1]2.

Note that if f(u, λ) does not depend on u (which is the case if the underlying process is stationary), then the
expression E is equal to zero while being strictly positive otherwise. So in order to obtain a test for the null
hypothesis that f(u, λ) does not depend on the rescaled time u, it is natural to estimate E and to reject the
null hypothesis if the estimator becomes ’big’.

3 The estimator

For obtaining an estimator forE we require an estimator for the local spectral density f(u, λ), which is given
by the so called local periodogram. This quantity is obtained by choosing an N = o(T ) and calculating

IN (u, λ) =
1

2π
|
N−1∑
p=0

XbuTc−N/2+p+1,T exp(−iλp)|2,

where we set Xt,T = 0 for t /∈ {1, ..., T}. This is the usual periodogram but only using N data around
the time point buT c. One can show that, if N → ∞, then, as for the classical periodogram, the local peri-
odogram is an asymptotically unbiased (but not consistent) estimator for the time-varying spectral density.
We now divide the T data into M intervals with length N each (i.e. it is T = NM ). An estimator for the
quantity E is then given by

Ê = sup
v,ω∈[0,1]

|Ê(v, ω)|,

where

ÊT (v, ω) :=
1

T

bvMc∑
j=1

bωN2 c∑
k=1

IN (uj , λk)− bvMc
M

1

T

M∑
j=1

bωN2 c∑
k=1

IN (uj , λk).

Here uj denote the rescaled midpoints of the M intervals and λk = 2πk/N correspond to the usual Fourier
frequencies. Theorem 2 in [13] now states that if D < 1/4 and

N →∞, N/T → 0, T 1/2 log(N)/N1−2D → 0 (1)

is satisfied, then a normalized version of ÊT (v, ω) converges to some Gaussian process, which covariance
structure depends in a complicated way on the spectral density f(u, λ). So the asymptotic distribution of
Ê is unknown in general and resampling methods are required to obtain critical values. Note further, that it
is essential that N/T and

√
T/N1−2D both tend to zero, so asymptotic Gaussianity is no longer obtained

for D ≥ 1/4 (which is in line with the findings of [15] in the stationary case). However, we will provide a
bootstrap procedure in the next section which approximates the critical values in this situation as well.

4 Bootstrap
In order to obtain critical values we proceed as follows.
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1) Choose p = p(T ) ∈ N and calculate θ̂T,p = (d̂, σ̂2
p, â1,p, . . . , âp,p) as the minimizer of

1

T

T/2∑
k=1

(
log fθp(λk,T ) +

IT (λk,T )

fθp(λk,T )

)
where λk,T = 2πk/T for k = 1, . . . , T/2, IT (λ) = 1

2πT |
∑T
t=1Xt,T exp(−iλt)|2 is the usual

periodogram for stationary processes and

fθp(λ) =
|1− exp(−iλ)|−2d

2π
× σ2

p

|1−∑p
j=1 aj,p exp(−iλj)|2

is the spectral density of a stationary FARIMA(p, d, 0) model which we want to fit. Note that the
estimator θ̂T,p is the classical Whittle estimator of a stationary process; see [17].

2) Calculate Yt,T = (1−B)d̂Xt,T for t = 1, . . . , T and simulate a pseudo-series Y ∗1,T , . . . , Y
∗
T,T accord-

ing to

Y ∗t,T = Yt,T ; t = 1, . . . , p, Y ∗t,T =

p∑
j=1

âj,pY
∗
t−j,T + σ̂pZ

∗
t ; p < t ≤ T,

where the Z∗t are independent standard normal distributed random variables.

3) Create the pseudo-seriesX∗1,T , . . . , X
∗
T,T by calculatingX∗i,T = (1−B)−d̂Y ∗i,T and compute Ê∗T (v, ω)

in the same way as ÊT (v, ω) but with the original observations X1,T , . . . , XT,T replaced by the boot-
strap replicates X∗1,T , . . . , X

∗
T,T .

By repeating the above steps B ∈ N times, one obtaines an estimator for the 1− α quantile of Ê under the
null hypothesis. The null hypothesis is then rejected if Ê exceeds this estimated qantile. If we let p = p(T )
grow to infinity as the sample size T increases, then, under suitable conditions, a level α test is obtained, as
it is shown in Section 4 of [13]. Note D only has to be smaller than 1/2 which is the usual restriction in the
framework of long-range dependence.
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Hidden Markov models in modelling time series of earthquakes
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Abstract
Discrete valued Hidden Markov Models (HMMs) are used to model time series of event counts in several
scientific fields. The model has two parts: the observed sequence of event counts and an unobserved (hidden)
sequence of states that consist a Markov chain. Each state is characterized by a specific distribution and
the progress of the hidden process from state to state is controlled by a transition probability matrix. In
this work we aim to present an application of HMMs to a bivariate discrete valued time series occurring
in seismology by extending the existing univariate models. In particular, on 26 December 2004 and 28
March 2005 occurred two of the largest earthquakes of the last 40 years between the Indo-Australian and
the southeastern Eurasian plates with moment magnitudes Mw = 9.1 and Mw = 8.6 respectively. An
interesting question is to examine whether the events can be correlated. To do so we examine the time series
containing the daily number of events in the region of each mainshock. Our aim is firstly to identify the
dynamics for each series separately by fitting univariate Poisson HMMs and secondly to account for any
correlation between the two series.
While models for univariate discrete valued time series are well known we extend the HMMs to the bivariate
case by assuming appropriate bivariate discrete distributions for each state. We examine properties of the
model and propose inference. Maximum likelihood estimators of the models’ parameters are derived using
an EM algorithm.

Keywords: Hidden Markov Models; Poisson; Bivariate Poisson; earthquake counts
AMS subject classifications: 62M10

1 Introduction
HMMs are well known models with many applications incluing seismology (see [6], [3] and [8]). They
allow for overdispersion (variance larger than the mean), autocorrelation and zero inflation in the data.
Characteristics that are often present in many real data. While the literature on HMMs now flourishes, there
is a lack of such models for multivariate count data, i.e. when many count random variables are observed
together in different time points. Such models may arise in several disciplines and they also constitute a
class of time series models for multivariate counts which is less developed and has itself particular interest.
We extend HMMs to the bivariate case by assuming both the standard bivariate Poisson distribution and
a bivariate discrete distribution with Poisson marginals based on the Frank Copula for each state. We use
the proposed models to jointly model the daily frequency of earthquakes in 2 adjacent areas in the Sumatra
rupture zone. These areas were activated with a time difference approximately 3 months. The occurrence of
an earthquake is a result of strain accumulation in the area, also known in the literature as ”tectonic loading”.
When the amount of strain build up exceeds the ability of a fault to prevent slip, energy is released with the
earthquake occurrence. Stress changes generated by large earthquakes influence the timing and locations
of subsequent earthquakes. Usually the activity migrates from one area two the other and this appears as
∗Corresponding author, e-mail: korfanogiannaki@gmail.com
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negative correlation between the two time series. Our purpose is to use statistical models and particularly
HMMs to examine the presence of correlation in the time series of the two strong earthquakes that occurred
in the region of Sumatra in December 2004 and March 2005. Due to the nature of the data models that allow
for both positive and negative correlation are required. The inclusion of copula in the model allows for more
flexible dependence structure. The selection of the particular copula family is based on the fact that it allows
not only for positive but also negative correlation. Of course, any other copula can be used. The models’
parameters are estimated using an EM algorithm.

2 Proposed models

2.1 Hidden Markov models: the general context
HMMs are discrete time stochastic processes that consist of two parts. The first part is an unobserved finite
state Markov chain {Ci : i ∈ N} on m states. The second part is a non-negative integer valued sequence
of random variables {Yi : i ∈ N} such that, conditionally on Ci are mutually independent. Each state is
associated with a probability distribution function f from the same parametric family Λ. When Ci is known
Yi takes the value yi with probability f(yi | ci). If in the univariate case we assume that each observation is

generated from a Poisson distribution then f takes the form f(yi|ci = j) =
exp−λj λ

yi
j

yi!
where λj ≥ 0 and

yi = 0, 1, . . . , for all i = 1, . . . , n and j = 1, . . . ,m.
The parameters of the model are the transition probabilities of the Markov chain and the parameters of the
probability distributions that are associated with the states. The transition probabilities γlj are defined as:
γlj = P (Ci = j | Ci−1 = l). This is the probability that given the hidden process was in state l at the
previous time point, it will be in state j at the current. If we denote with Ψ the parameter vector to be
estimated then the likelihood of an HMM is:

L(Ψ | y1, . . . , yn) =

m∑
c1=1

. . .

m∑
cn=1

P (C1 = c1)f(y1 | c1)

n∏
i=2

γci−1cif(yi | ci)

where n is the length of the observation sequence. For the likelihood of a HMM to be calculated, the
backward, βj(i), and forward, αj(i), probabilities were introduced by [1]: βj(i) = P (yi+1, . . . , yn|Ci = j),
αj(i) = P (y1, . . . , yi, Ci = j). The likelihood can then be calculated in terms of the forward probabilities

as: L =
m∑
l=1

αl(n).

We will formulate 2 different models. The Bivariate Poisson Hidden Markov model (BPHMM) and the a
Hidden Markov model based on a Frank copula (HMMC). What differentiates the models is the selection of
the distribution family. In the BPHMMs each state corresponds to a standard bivariate Poisson distribution
while in the HMMCs each state corresponds to bivariate distribution with Poisson marginals defined via a
Frank copula.

Bivariate Poisson Model

In the BPHMM the distribution associated with each state is a bivariate Poisson distribution. Assume that
Xi, are independent Poisson distributions with parameters λi, respectively where i = 0, 1, 2. The random
variables Y1, Y2 defined as: Y1 = X1 +X0 and Y2 = X2 +X0 follow the bivariate Poisson distribution with
parameters (λ0, λ1, λ2). In BPHMM each state is associated with a different bivariate Poisson distribution.
Consider, that λj = (λj0, λ

j
1, λ

j
2)′ is the vector of parameters of the bivariate Poisson distribution that cor-

responds to state j and yi = (y1i, y2i)
′ for i = 1, . . . , n is the vector of observed data that corresponds to
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the i-th observation. The joint probability distribution of Y1, Y2 that corresponds to state j is given by the
formula:

f(y1i, y2i) = e−(λj1+λj2+λj0) λ
j
1

y1i

y1i!

λj2
y2i

y2i!

min(y1i,y2i)∑
r=0

(
y1i

r

)(
y2i

r

)
r!

(
λj0
λj1λ

j
2

)r
,

y1, y2 = 0, . . . , and λj0, λ
j
1, λ

j
2 ≥ 0, while Cov(Y1t, Y2t) = λ0j ≥ 0 is the covariance between the random

variables Y1 and Y2 and since it is always equal to a non negative number, only positive correlation is
allowed. When the covariance is equal to zero independence is implied.

Hidden Markov Models with Copula

Copulas are bivariate (multivariate) distributions with uniform marginals. Copulas are currently fashionable
models to describe dependence. For a more formal definition see [7]. In the discrete case in order to
derive the joint probability mass function (pmf) we need to take differences i.e.: for the bivariate case with
marginals F (x) and G(y) the joint pmf is given by the formula:

f(y1i, y2i) = C(F (y1i), G(y2i))− C(F (y1i − 1), G(y2i))−
−C(F (y1i), G(y2i − 1)) + C(F (y1i − 1), G(y2i − 1))

where F (·) and G(·) are the marginal cdfs. This can be generalized to larger dimensions, but as di-
mensions increase excessive summation is needed. This creates a challenge on selecting copulas that
can be efficient for the calculations. So, far we have worked with a bivariate Frank copula given by
C(u, v) = − 1

τ log {1 + (exp−τu−1)(exp−τv −1)
(exp−τ −1) }, where τ is the copula parameter representing the depen-

dence implied. Frank copula allows for both negative and positive correlation. In addition the parameter
of the Frank copula is unbounded and can take any real value. Finally, dependence in the Frank copula is
symmetric in both tails. Of course any other copula can be used. In our case we have selected Poisson
maginals.

3 Parameter estimation
Due to the underlying structure of HMMs that allow for a missing data representation of the model an EM
algorithm ([2]) is adopted for Maximum Likelihood estimation of the parameters of interest both in the
univariate and in the bivariate case. We define the indicator random variables uj(i) and vjk(i) respectively,
where uj(i) = 1, if Ci = j and 0 otherwise and vjk(i) = 1, if Ci−1 = j and Ci = k. The complete data
log-likelihood, in terms of the indicator random variables is given by:

log πc1 +
n∑
i=2

m∑
j=1

m∑
k=1

vkj(i) log γkj+

n∑
i=2

m∑
j=1

uj(i) log f(yi | λj)︸ ︷︷ ︸
weighted likelihood

At the E-step of the EM algorithm we estimate u and v through their conditional expectations: ûj(i) =
P (Ci = j | y1, . . . , yn) and v̂jk(i) = P (Ci = k,Ci−1 = j | y1, . . . , yi). The backward and forward
probabilities are used to calculate u and v and the likelihood of the model. The reader can find full details
about how the backward and forward probabilities are computed in [6].
At the M-step we maximize the complete data log-likelihood. In the univariate case (for details see [6])
and in the case of bivariate Poisson (for details see [4]) the parameters can be estimated by closed form
equations. In the model with copula there are no close equations so numerical maximization technics are
used (we implemented them in R)



18TH EUROPEAN YOUNG STATISTICIANS MEETING 98

4 Application

4.1 Data
Two large earthquakes occurred between the Indo-Australian and the southeastern Eurasian plates on 26
December 2004 and 28 March 2005 with moment magnitudesMw = 9.1 andMw = 8.6 respectively. Both
earthquakes were shallow and were followed by many aftershocks. The spatial distribution of aftershocks
gives an approximation of the fault zone of each earthquake. In the case of the 2004 earthquake the rapture
started from the South and propagated further North. While in the case of the 2005 earthquake the rupture
followed the opposite direction. The regions that correspond to the rupture zones of the two earthquakes
are denoted by N (North) and S (South), respectively. The fact that the two rupture zones do not overlap
indicate that both earthquakes are mainshocks with their one aftershocks each. Earthquakes with moment
magnitudes mb ≥ 4.2 were selected from the USGS and ISC earthquake data files for the region defined
by the rectangle with coordinates −1.00N − 15.00N and 91.00E − 100.00E. Each time series consists
of earthquake counts, in daily time units, for the two regions N and S. The mean number (variances) of
earthquakes per day is 0.14 (0.43) in the North region and 0.10 (0.22) for the South. The variance in the
North region is almost 3 times the mean while in the South it is double than the mean. There is evidence
of overdispersion, in both time series. 248 earthquakes have occurred in the North region and 185 in the
South, in the time period examined. The maximum number of earthquakes observed in the North region is
12, while in the South is 14. The correlation between the two regions is 0.03. Hidden Markov models are
adequate models to describe for both overdispersion and serial correlation that appear in the univariate series
of earthquake counts. The extended HMMs to the bivariate case allow us to jointly model the frequency of
earthquakes in the 2 regions and estimate the correlation between them.

Independent PHMMs BPHMMs HMMC
m Loglik BIC Loglik BIC Loglik BIC
2 -1291.183 2627.409 -1291.085 2642.226 -1254.663 2569.383
3 -1250.091 2590.268 -1248.038 2608.683 -1235.939 2584.486
4 -1239.323 2628.789 -1237.453 2655.076 -1225.423 2631.018

Table 1: Comparison of the fitted models on the basis of BIC. Key: m is the number of states

4.2 Results
We applied PHMMs to the 2 univariate time series of earthquake counts for different number of states.
We also modeled jointly the two time series considering both BPHMMs and HMMC. The comparison be-
tween the different models was based on the values of the Bayesian information criterion (BIC) defined as:
BIC(m) = −2l(k) + ln(n)df , where l(k) is the maximized log-likelihood for the model with m states, df
is the number of free parameters of that model and n is the size of the sample. The values of the maximized
log-likelihood and of BIC for the different models with different number of states are summarized in Table 1.
The model that best describes the data is the HMMC with 2 states. The parameter estimates for the HMMC
model with 2 states are shown in Table 2. Each column of the table corresponds to a different state. The first
2 rows correspond to the seismicity rates for the 2 regions while the last row corresponds to the parameter
of the Frank copula.
The estimated transition probability matrix determined for the HMMC model with 2 states is

Γ̂ =

[
0.99 0.01
0.61 0.39

]
.
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State 1 corresponds to a state of seismic quiescence. State 2 is a very active state for the North region. When
the two regions are in state 1 they remain in that state with probability 0.99. This state tries to describe
the excessive number of zeros present in the two time series. The use of copula based multivariate discrete
distributions allows for more flexible dependence structure.

1st state 2st state
North 0.076 4.020
South 0.094 0.077

copula parameter 0.825 2.844

Table 2: Parameter estimates for the HMMC model with 2 states.
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Abstract
This study focuses on approximating the posterior distribution of mixture weights (θ) given some data (x)
using Variational Bayes (VB) methods [1]. Standard VB implementation [4] for this problem approximates
the joint posterior distribution p(θ, z|x) of parameters and latent variables (z). It is demonstrated via simu-
lation that this approach leads to variance underestimation. For this reason a new variational scheme is de-
veloped by integrating out the latent variables and targeting the marginal posterior distribution p(θ|x). The
new approximation belongs to the richer family of Generalized Dirichlet distributions [8], while a stochastic
approximation algorithm [6] performs the optimization in the corresponding spaces arising from two differ-
ent parameterizations. Moreover, it is proven that the new solution leads to a better marginal log-likelihood
bound compared to the former.
The method is applied to transcript expression estimation using high throughput sequencing of RNA (RNA-
seq) technology. Mixture models are a natural way to deal with such problems, and Gibbs sampling has
already been applied [3]. The application of Variational methods to these datasets is novel and leads to
encouraging results. Finally, the variational solution is exploited in order to improve Markov Chain Monte
Carlo (MCMC) sampling with the Delayed Rejection algorithm [7].

Keywords: Kullback-Leibler divergence, marginal likelihood bound, BitSeq, RNA-seq.
AMS subject classifications: 62F15, 81T80, 92B15.

1 Introduction

Let x = (x1, . . . , xn) denote n independent observations identically distributed according to a mixture of
K > 1 known distributions, f1, . . . , fK , that is,

xi ∼
K∑
k=1

θkfk(xi), i = 1, . . . , n. (1)

Let θ = (θ1, . . . , θK−1) ∈ ΘK := {θk > 0, k = 1, . . . ,K − 1 :
∑K−1
k=1 θk < 1} denote the unknown

weights with θK := 1 −∑K−1
k=1 θk. Moreover, let zi := (zi1, . . . , ziK) be the latent vector which assigns

the i-th observation to one of the components, that is, xi|zik = 1 ∼ fk(xi), with zi|θ ∼ M(1; θ1, . . . θK),
independently for i = 1, . . . , n, whereM denotes the multinomial distribution.
Under a Bayesian setup, let p(θ) be the prior distribution, which in our context is a DirichletD(α1, . . . , αK).
The marginal likelihood, defined as m(x) :=

∫
ΘK

p(θ|x)p(θ)dθ, is an important quantity to estimate be-
cause it allows for model selection. MCMC estimation of m(x) is possible but not straightforward (see for
example [2], p.139). VB methods [1] provide an attractive alternative based on an approximating distribu-
tion, while the model selection problem is dealt by providing a lower bound to the marginal likelihood.
∗Corresponding author, e-mail: panagiotis.papastamoulis@manchester.ac.uk
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Standard implementation of VB methodology [4] approximates jointly θ, z|x, rather than the actual (non-
augmented) posterior. In this paper we show that it is better to approximate p(θ|x). The proposed method-
ology exploits the solution of standard VB by performing an optimization into a class of distributions that
share the same mean with the initial solution. Two different parameterizations are taken into account: the
first one forces the approximating distribution to remain inside the Dirichlet family, while the second one
relaxes this assumption by using the Generalized Dirichlet family.
The rest of the paper is organized as follows. Standard VB implementation is briefly described in Section
2. In Section 2.1 a better bound is constructed and the optimization problem is stated in its general form.
Moreover, two different parameterizations for the optimization problem are given. The methodology is
illustrated in a simulation study and a real RNA-seq dataset in Sections 3.1 and 3.2. Finally, Section 3.3 uses
the VB approximations in the Delayed Rejection MCMC algorithm.

2 Variational Approximation

VB methods aim at finding a lower-bound (L) of logm(x), by performing a free-form minimization of the
Kullback-Leibler divergence KL(q||p) between an approximating distribution q and the target distribution
p. Hence, we may write

logm(x) = L+ KL(q||p). (2)

According to the standard VB methodology [4], the joint posterior p(θ, z|x) is approximated by another
distribution q(θ, z). In order to make the problem tractable this minimization is done considering the family
of distributions

G = {g(θ, z) = g(θ)g(z) : g(z) =

n∏
i=1

K∏
k=1

φzikik }, (3)

where φ := {φik : i = 1, . . . , n, k = 1, . . . ,K} are the variational parameters. It turns out that the
approximate distribution for θ is

q(θ) = D(γk; k = 1, . . . ,K), (4)

γk := αk +
∑n
i=1 φik, and the optimization with respect to φ is done using a steepest descent algorithm.

Figure 1 displays the estimates of θk|x based on the simulation studies in Section 3. The black lines are
considered as the ground “truth” and they are estimated by a long MCMC run, while the dashed ones are
the estimates corresponding to the standard VB method. It is obvious that this approach exhibits good
performance in terms of posterior means, but it leads to variance underestimation.

2.1 Bounding the non-augmented posterior
The distribution in (4) is optimal in terms of minimizing the KL divergence between the joint posterior
p(θ, z|x) and the distributions considered in (3). However, this does not mean that it is the “best” Dirichlet
approximation of the marginal posterior p(θ|x). This is proven in the following proposition.

Proposition 2.1. Let F denote any subset/family of distributions with q(θ) ∈ F . Then,

min
f∈F

KL(f(θ)||p(θ|x)) 6 KL(q(θ, z)||p(θ, z|x)), (5)

and the equality holds if and only if q(θ, z) = p(θ, z|x), ∀θ, z.

Proof. By the log-sum inequality, ∀θ ∈ Θ

q(θ) log
q(θ)

p(θ|x)
=

(∑
z

q(θ, z)

)
log

∑
z q(θ, z)∑
z p(θ, z|x)

6
∑
z

q(θ, z) log
q(θ, z)

p(θ, z|x)
⇒
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∫
q(θ) log

q(θ)

p(θ|x)
dθ 6

∫ ∑
z

q(θ, z) log
q(θ, z)

p(θ, z|x)
dθ ⇔

KL(q(θ)||p(θ|x)) 6 KL(q(θ, z)||p(θ, z|x)).

Hence (5) stems by the assumption that q(θ) ∈ F .

Now, for a given family F , let δ ∈ ∆F denoting the corresponding (possibly high-dimensional) parameter
space and f ∈ F . Equation (2) implies that the lower bound (L) of the log-marginal likelihood correspond-
ing to f(·; δ) can be expressed as

L(δ) =

∫
ΘK

{log p(x|θ) + log p(θ)− log f(θ; δ)}f(θ; δ)dθ. (6)

We have to stress the fact that (6) cannot be computed directly even for fixed δ. However, (6) can be
approximated via simulation, since it is expressed as the mean value of the random variable g(θ) :=
log p(x|θ) + log p(θ)− log f(θ; δ), θ ∼ f(·; δ). So, our objective function is written as:

max
δ∈∆F

L(δ) = max
δ∈∆F

Eδg(θ), θ ∼ f(·; δ) ∈ F . (7)

Having in mind that the best variational approximation targeting the joint posterior is the Dirichlet distribu-
tion in (4), an obvious choice for F would be (a subset of) the Dirichlet family of distributions. However,
it will prove useful to take into account an even broader family as well, that is, the Generalized Dirichlet
family of distributions [8]. The VB solution (4) can be expressed as a Generalized Dirichlet distribution:
q(θ) = D(γ1, . . . , γK) ≡ GD(γ1, . . . , γK−1; γ+

1 , . . . , γ
+
K−1), γ+

` :=
∑K
j=`+1 γ`, ` = 1, . . . ,K − 1.

Next we define two specific sets FD and FGD, with FD ⊂ FGD, in order to make the optimization tractable
in (7). Our guide is to keep the same mean as the original VB distribution (4). These two sets are the
following

FD := {D(eδγ1, . . . , e
δγK) : δ ∈ R}, (8)

FGD := {GD(eδ1γ1, . . . , e
δK−1γK−1; eδ1γ+

1 , . . . , e
δK−1γ+

K−1) :

δk ∈ R, k = 1, . . . ,K − 1}. (9)

Note that the number of parameters in (8) and (9) equals to one and K, respectively. Moreover, for all
f ∈ FGD it holds that Eθk = γk/

∑K
j=1 γj , ∀k = 1, . . . ,K, while the same remains true for f ∈ FD

as well, since FD ⊂ FGD. Consequently, both families (8) and (9) contain distributions having the same
means as the distribution q(θ) in (4). In order to maximize (7) under parameterizations (8) or (9) a stochastic
approximation algorithm [6] was implemented.

3 Applications

3.1 Simulated Data
Let ej , j = 1, . . . , 4 denote given sequences with replacement of the letters “A”, “T”, “C” and “G”, having
lengths equal to 1000, 5, 5, 1000, respectively. Moreover, consider three discrete sets I1, I2, I3, arising by
joining different combinations of ej , j = 1, . . . , 4 one after the other. In particular, I1 = {e1, e2}, I2 =

{e2, e4} and I3 = {e2, e3, e4}. Let now xi ∼
∑K
k=1 θkUIk , K = 3, i = 1, . . . , 2000 be randomly sampled

short sequences of 50 consecutive letters from a mixture of uniform distributions defined in Ik, k = 1, 2, 3.
The true values of the weights used for the simulation is θ = (2/9, 2/9, 5/9).
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Figure 1: Density estimates of θk|x. Up: Simulated data k = 1, 2, 3. Down: RNA-seq data k = 8, 12, 14.

After imposing a D(1, 1, 1) prior on θ, we applied the three VB algorithms. The estimates of the lower
bound of logm(x) are shown in Table 1. The first row of Figure 1 displays the estimated posterior marginal
densities. Compared to a long MCMC run estimate, we conclude that the Dirichlet modification is better than
standard VB, however the problem of variance underestimation is still apparent. Finally, the Generalized
Dirichlet distribution is quite close to the one estimated by MCMC.
In order to make a connection with the next section, under a biological framework the 2000 observations
would be called short reads, while the terms exons and transcripts refer to the sets ej and Ik, respectively.
Transcriptome is the set of all available transcripts and it is considered known. RNA-seq is a technology
aiming to identify and quantify mRNA transcripts in a biological sample of short reads from the transcrip-
tome. Some of the transcripts share much of their sequence (exons), hence the origin of a sampled read is
unknown. In statistical terms, this problem reduces to estimate the weights of a mixture model, see [3] for
details.

3.2 RNA-seq Data
A sample of human brain tissue reads was downloaded from NCBI (accession number GSM343511). This is
part of a much bigger study (see [5]), but for our illustration we used as reference the gene ENSG00000102078.
The resulting sample consists of n = 61875 reads and the number of components (transcripts) is equal to
K = 14. Finally, we used the methodology described in [3] in order to compute the likelihood of the reads
to the transcripts.
The estimates of the lower bound of logm(x) are shown in Table 1. Once again the marginal densities
arising from the optimization in FGD are quite close to the ones obtained by a long MCMC run, as displayed
in the second row of Figure 1 (only the 3 more highly expressed transcripts are shown).

3.3 Comparing the Approximations and Improving MCMC
The distributions arising from the VB methods can be used in order to obtain a MCMC sample from the
posterior, via the two-stage Delayed Rejection MCMC technique [7]. At the 1st stage a value is generated
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Dataset standard VB Dirichlet Gen.Dirichlet
Section 3.1 -15341.24 (15.72%) -15340.26 (31.00%) -15339.38 (96.46%)
Section 3.2 -1367478.31 (2.26%) -1367475.71 (17.6%) -1367474.57 (39.64%)

Table 1: Marginal log-likelihood bounds according to the three VB methods. The percentages correspond
to the 1st stage acceptance rate discussed in Section 3.3.

by an approximating distribution, independently from the current state of the chain. This is accepted with
the usual Metropolis-Hastings acceptance ratio. If it is rejected, a random walk proposes a second candidate
state, which is based on the previous state of the chain (details not shown here). Clearly, the 1st stage
acceptance rate should be larger as the Variational approximation gets “better”, while this can serve as a
measure of efficiency of the approximation. Moreover, a high 1st stage acceptance rate improves the mixing
of the MCMC sample, as the 1st stage draws are uncorrelated. A long MCMC run resulted to the 1st stage
acceptance rates shown in Table 1, highlighting the improved performance of the proposed method over the
standard VB.

Acknowledgements: The first author wishes to thank Associate Professor Ioannis Ntzoufras for recom-
mending him to participate in the 18th EYSM. This work was supported by a BBSRC award ref. BB/J009415/1.
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Abstract
Paired comparison data are often analyzed employing regression models in which the probability that an
item wins the comparison with another item is a function of the difference between the “worth” of the
two items. Traditional models generally assume that all comparisons are independent. This assumption is
often unrealistic, since it is difficult to believe that, for example, the results of two matches with a player
in common are independent. Here, two different approaches that account for dependence in the data are
illustrated. The first one is a random-effects model designed in way to produce a scheme of cross-correlations
between observations with common items. The second approach is a marginal model specified only through
means and covariances reflecting comparisons dependencies. Both approaches pose inferential difficulties
either because the likelihood is computationally complex or because the joint distribution of the data is
unavailable. These difficulties are overcome by means of different forms of composite likelihood inference.

Keywords: Bradley-Terry model, optimal estimating equations, paired comparisons, pairwise likelihood,
Thurstone model.
AMS subject classifications: 62F10, 62J12.

1 Introduction
Paired comparison data derive from the comparison of objects or items in couples. This type of data can
be encountered in many areas, including marketing and consumer behavior data, sport data, psychometric
experiments and many more. In some instances there is a person that performs the paired comparisons, as in
psychometric experiments, but there may also be a direct comparison between items, as in sport data.
Let Yij denote the result of the comparison between item i and item j. Then Yij = 1 if iwins the comparison
against j, Yij = 0 otherwise. Let µi denote the “worth” or ability of item i, i = 1, . . . , n, then traditional
models for the analysis of paired comparison data assume that the probability that i wins against j is

πij = E(Yij) = F (µi − µj), (1)

where F (·) is the cumulative distribution function of a zero-symmetric random variable. The classical
models employed for the analysis of paired comparison data are the Thurstone model [9], which assumes
that F in formula (1) is the cumulative distribution function of a standard normal random variable, and the
Bradley-Terry model [1] that specifies a logistic distribution function F . If there are explanatory variables,
[8] suggests to set

µi = xTi β,

where β is a d-dimensional vector of regression parameters.
Traditional models for the analysis of paired comparison data assume that all comparisons are independent.
However, this assumption appears unrealistic since it implies that, for example, the results of two matches
∗Corresponding author, e-mail: manuela.cattelan@unipd.it
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involving a common player are independent. We illustrate two possible approaches to extend traditional
models in order to account for dependence in the data. The first extension specifies a conditional model
in which a multivariate distribution of all observations is described. The second approach accounts for
dependence in the data without specifying a whole multivariate distribution, but only the first two moments.

2 Conditional models
It is possible to model the dependence among the observations through the inclusion of item-specific random
effects [5]. In this case the worth of item i is described as

µi = xTi β + Ui,

where Ui, i = 1, . . . , n, are zero-mean independent random effects with density function f(·;σ2) that
depends on the parameter σ2. The random effects allow to account also for the imperfect representation of
the worth by the linear predictor.
The binary observations may be represented as censored continuous latent variables such that Yij = 0 iff
Zij < 0 where

Zij = (xi − xj)Tβ + Ui − Uj + εij ,

where εij are independent zero-mean continuous random variables. Computational complexity is reduced
if we assume that the random effects are normally distributed with mean zero and variance σ2 and that the
comparison-specific errors are normally distributed with mean 0 and variance 1, and they are independent of
the random effects. The variance of the errors is set to 1 for identification purposes. Then Zij ∼ N((xi −
xj)

Tβ; 1 + 2σ2) and the correlation between two latent variables is

corr(Zij , Zkl) =

 σ2/(1 + 2σ2), if i = k or j = l,
−σ2/(1 + 2σ2), if i = l or j = k,
0, if i 6= j 6= k 6= l.

(2)

Hence, if two paired comparisons have an item in common, they are correlated, otherwise they are indepen-
dent. The above specification implies that the correlation σ2/(1 + 2σ2) lies in the interval (0, 0.5).
Unfortunately, the likelihood function associated with the random effects model requires the approximation
of an integral of dimension equal to the number of comparisons

L(θ; y) =

∫
Rn


n−1∏
i=1

n∏
j=(i+1)

P(Yij = yij |Ui = ui, Uj = uj ; θ)


{

n∏
i=1

φ(ui; θ)dui

}
,

where θ = (β, σ2), y = (y12, . . . yn−1n), and φ(·) is the density function of a standard normal random
variable.
Considering the latent variable specification, the likelihood function can be written as an integral with di-
mension equal to the number of paired comparisons

L(θ; y) =

∫
A12

· · ·
∫
An−1n

φN (v; Σ)dv,

where

Aij =

{
(−∞,−(xi − xj)Tβ/

√
1 + 2σ2), if yij = 0,

(−(xi − xj)Tβ/
√

1 + 2σ2,+∞), if yij = 1,

φN (·; Σ) denotes the density function of an N -dimensional normal random variable with correlation matrix
Σ, N denotes the total number of paired comparisons and the elements of Σ are as shown in (2). This
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specification requires the approximation of a normal multivariate integral of dimension equal to the number
of paired comparisons observed. Since the dimension of the integral can be very high, [2] suggests to employ
pairwise likelihood to make inference in this model.

2.1 Pairwise likelihood estimation
Pairwise likelihood is an instance of composite likelihoods [10] that consists of the product of all marginal
bivariate probabilities. In the paired comparisons context, the pairwise likelihood is the product of all bivari-
ate probabilities of all couples of comparisons

PL(θ; y) =
∏

(ij) 6=(kl)

P(Yij = yij , Ykl = ykl; θ). (3)

Under regularity conditions, the maximum pairwise likelihood estimator is asymptotically normally dis-
tributed with mean θ and covariance matrix H(θ)−1J(θ)H(θ)−1, where J(θ) = var(∇pl(θ;Y ), H(θ) =
E(−∇2pl(θ;Y )) and pl(θ;Y ) = logPL(θ;Y ).
The use of pairwise likelihood noticeably reduces the computational complexity. For example, if we consider
the censored latent random variable specification, then the bivariate probability that i loses the comparisons
both against j and k is

P(Yij = 0, Yik = 0) = P(Zij < 0, Zik < 0) =

= Φ2

(
− (xi − xj)Tβ√

1 + 2σ2
,− (xi − xk)Tβ√

1 + 2σ2
;

σ2

1 + 2σ2

)
,

where Φ2(·, ·; ρ) denotes the cumulative distribution function of a bivariate normal random variable with
standard marginals and correlation ρ. The pairwise likelihood (3) requires the approximation of at most
bivariate normal integrals. Simulation studies presented in [2] show that pairwise likelihood estimators
perform well with a modest loss of efficiency.

3 Marginal models
In some instances, one may be unwilling to specify the whole distribution of the data. In these cases, it is
still possible to extend the traditional models to take into account the dependence in the data, but specifying
only the first two moments of the distribution.
The maximum likelihood estimates of the regression parameters in both the Bradley-Terry and the Thurstone
models are computed by solving the equations

DV −1(y − π) = 0,

where D denotes the Jacobian of π = (π12, . . . , πn−1n) with respect to the components of β, and V is
the covariance matrix computed under the assumption of independence, hence it is a diagonal matrix with
entries πij(1− πij). Under the independence assumption, β̂ has an asymptotically normal distribution with
mean β and variance (DTV −1D)−1. Dependence can be accounted for by substituting the variance matrix
computed under the independence assumption V with a non-diagonal covariance matrix W in which not all
cov(Yij , Ykl) are zeros.
The classical measure of dependence in binary data is the cross-ratio

ψij,kl =
P(Yij = 1, Ykl = 1)P(Yij = 0, Ykl = 0)

P(Yij = 1, Ykl = 0)P(Yij = 0, Ykl = 1)
.

It is reasonable to assume that only comparisons with an item in common are dependent, so ψij,kl = 1 if
i 6= j 6= k 6= l. Moreover, paired comparison models must assure the symmetry condition P(Yij = 1) =
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P(Yji = 0), hence it follows that ψij,ik = 1/ψij,ki. Thereafter, we assume a common cross-ratio ψ for all
couples

ψij,kl =

 ψ, if i = k or j = l,
1/ψ, if i = l or j = k,
0 otherwise.

Hence, following [4], the bivariate probability of observing a win for i against both j and k is

pr(Yij = 1, Yik = 1) =

 πijπik, if ψ = 1,
1 + (πij + πik)(ψ − 1)−G(πij , πik, ψ)

2(ψ − 1)
, if ψ 6= 1,

(4)

where G(πij , πik, ψ) =
√
{1 + (πij + πik)(ψ − 1)}2 + 4ψ(1− ψ)πijπik. The probabilities of the other

three possible combinations of results can be computed from equation (4) and marginal univariate probabil-
ities.
The elements of the covariance matrix W can be computed as cov(Yij , Yik) = P(Yij = 1, Yik = 1) −
P(Yij = 1)P(Yik = 1). Since they depend also on the regression parameters β, it is not possible to employ
standard generalized estimating equations [7]. For this reason, we resort to the hybrid pairwise likelihood
method to estimate this marginal model extension.

3.1 Hybrid pairwise likelihood
Hybrid pairwise likelihood [6] suggests to iterate between solving optimal estimating equations for esti-
mation of the regression parameters and maximizing the pairwise likelihood equation for estimation of the
dependence parameter. Given the dependence parameter ψ, the regression parameters estimates β̂dep(ψ) are
computed by solving the equations

DW−1(y − π) = 0,

while, for a fixed β, the estimate ψ̂(β) is obtained maximizing the pairwise likelihood

PL(θ; y) =
∏

(ij),(kl)

P(Yij = yij , Yik = ykl; θ).

The procedure iterates between the solution of optimal estimating equations for β given ψ̂(β̂dep) and max-
imum pairwise likelihood estimation of ψ given β̂dep(ψ̂). At convergence, the estimates of the regression
coefficients are asymptotically normally distributed with mean β and covariance (DTW−1D)−1. This pro-
cedure requires only the specification of the first two moments of the distribution both for estimation of the
regression parameters and computation of their standard errors [3].

4 Conclusions
Inference in traditional models for the analysis of paired comparison data is performed by assuming in-
dependence among all observations. Often, this assumption is unrealistic, therefore different extensions
that account for dependence among observations are proposed. The first extension specifies a conditional
model in which dependence is introduced by item-specific random effects. The conditional models exten-
sion describes the whole distribution of all observations and inferential difficulties are overcome by means
of pairwise likelihood methods.
The second approach proposed specifies a marginal model, which requires assumptions only about the first
two moments of the distribution of the data. In this case, the recourse to the hybrid pairwise likelihood
method is suggested.
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Pairwise likelihood provides a straightforward solution to the problem of estimating complex models. This
characteristic and the nice theoretical properties possessed by pairwise likelihood, have promoted the use of
this estimating method in many contexts [10]. In particular, we employ pairwise likelihood in the conditional
model to overcome the problem of computation or approximation of a high dimensional integral. In the
marginal model proposed, pairwise likelihood is used in combination with optimal estimating equations in
order to estimate the dependence parameter, which cannot be recovered from estimating functions that do
not depend on the regression parameters.

Acknowledgements: The first Author acknowledges the financial support of the Finanziamento Giovani
Studiosi for the project “Inferential Issues in Regression Models for Dependent Categorical and Discrete
Data” carried out at the Department of Statistical Sciences, University of Padova.
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Gaussian priors on Sobolev balls
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Abstract Consider the problem of constructing Bayesian based confidence sets that are adaptive in L2-

loss over a continuous scale of Sobolev classes in the Gaussian White noise model. We show that both the
hierarchical Bayes and marginal likelihood empirical Bayes approaches lead to credible sets with asymptotic
coverage zero for certain oddly behaving functions. Then we give a new empirical Bayes method based on
the results of [7], which solves this problem and provides uniform and adaptive confidence sets over a whole
collection of Sobolev classes.

Keywords: Nonparametric Bayes, adaptation, credible sets, coverage, Gaussian processes.
AMS subject classifications: Primary 62G15; secondary 62G20.

Introduction
Adaptive techniques for nonparametric estimation have been widely studied in the literature and many rate-
adaptive results have been provided for a variety of statistical problems. However, an adaptive estimator
without any knowledge of its uncertainty is rather uninformative, since one knows that the estimator is
optimally close to the true function, but has no information about the actual distance. The uncertainty of an
estimator can be characterized by a confidence set. For confidence sets there are two antagonistic features
of interest, the size of the confidence sets and the coverage probability, in the sense that one can be achieved
at the expense of the other. The aim is to construct minimal size confidence sets such that the coverage
probability achieves a certain level.
The construction of adaptive confidence sets across a range of nested sub-models is even more involved. On
the one hand we require that the size of the confidence sets are optimal on every single sub-model. On the
other hand the coverage of the confidence sets is uniformly high over the collection of sub-models. It was
pointed out by Low [3] that the preceding two competing features can not hold simultaneously in general.
Introducing additional conditions, for instance shape restrictions [2] or the “self-similarity” assumption [6],
can solve the problem and the construction of adaptive confidence sets with uniformly good coverage is
possible.
In the Bayesian framework credible sets can be constructed to quantify the uncertainty in the posterior
distribution. Due to the heavy Bayesian computational machinery (MCMC methods, ABC techniques, etc),
in some cases the construction of credible sets can be easier than the construction of confidence sets from
frequentist estimators. The frequentist coverage of credible sets describes to what extent credible sets can
be viewed as frequentist confidence sets. From the celebrated Bernstein von Mises theorem follows that in
parametric models under some regularity conditions the Bayesian credible sets are asymptotically equivalent
to the frequentist confidence sets. However, in nonparametric problems the preceding equivalence does not
hold in general. In our work we are interested in the frequentist properties of nonparametric credible sets
based on adaptive Bayesian techniques.
∗b.szabo@tue.nl
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We consider the Gaussian sequence model which is often used as a platform to investigate more difficult
nonparametric statistical problems. In the analysis we work with the L2-loss function. Furthermore, we
assume that the true sequence is contained in a Sobolev ball with regularity β ∈ [D, 2D], for some given
positive constant D. In the preceding model there exist adaptive confidence sets with uniformly good cov-
erage properties [7]. We investigate the asymptotic behaviour of the marginal likelihood empirical Bayes
method and show that there are certain oddly behaving truths for which the credible sets have asymptotically
zero coverage. Good coverage properties of the credible sets rely on the correct bias-variance trade-off.
However, in the case of the preceding adaptive Bayesian procedure for certain unregular functions the bias
can dominate the variance which leads to a coverage probability zero. Keeping this in mind we construct a
new empirical Bayes method based on risk estimation which provides adaptive confidence sets with good
coverage properties.
The main message of the paper is that one has to choose the Bayesian procedure adequately to its purpose.
For instance if one evaluates the performance of the posterior mean with the mean integrated squared error
then it could happen that the likelihood based procedures attain sub-optimal behaviour. The reason behind
it is that the mean integrated squared error is connected to the L2-loss function, while the likelihood based
methods are related to the Kullback-Leibler divergence. In the present paper we consider the problem of
constructing credible sets with optimal size and good coverage. This boils down to finding a hyperparam-
eter α which balances out the bias and the variance terms. However, the marginal likelihood empirical
Bayes method selects that hyperparameter α which minimizes the Kullback-Leibler divergence between the
marginal Bayesian likelihood function and the truth.
In Section 4 we make these loose statements more precise. First we introduce the Gaussian sequence model
in more details. The negative result on the coverage of marginal likelihood empirical Bayes credible sets is
given in Section 4. The new empirical Bayes method is referred to Section 4. The whole Section 2 is based
on the paper [9]. We conclude the paper paper with a short simulation study in Section 4.

Main results
In the paper we work with the Gaussian white noise model and consider the sequence formulation

Xi = θ0,i +
1√
n
Zi, for all i = 1, 2, ...

where X = (X1, X2, ...) is the observed infinite sequence, Zi are independent standard normal distributed
random variables and θ0 = (θ0,1, θ0,2, ..) is the unknown infinite dimensional parameter of interest. Assume
that θ0 belongs to the Sobolev ball Sβ(M) = {θ :

∑
θ2
i i

1+2β ≤ M}, where β is the regularity parameter
and M is the squared radius of the Sobolev ball. The minimax rate of convergence over Sβ(M) is constant
times n−β/(1+2β).
In the Bayesian framework to make inference about the unknown sequence θ0 as a first step we endow it
with a prior distribution. In our analysis we chose the infinite dimensional Gaussian distribution

Πα =

∞∏
i=1

N(0, i−1−2α),

where the parameter α > 0 denotes the regularity level of the prior distribution. The optimal choice of
the hyperparameter α = β leads to posterior contraction rates n−β/(1+2β), while for other choices we get
sub-optimal contraction rate [5],[1]. Since the smoothness parameter β of the true function θ0 is usually not
available one has to use a data driven method to choose α, as in [4]. Throughout the paper we assume the a
priori knowledge that the parameter β lies in the interval [D, 2D], with some given positive parameter D.
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Marginal likelihood empirical Bayes method
In this section we state that the marginal likelihood empirical Bayes (MLEB) credible sets have asymptotic
coverage zero for certain irregular sequences. The marginal log-likelihood function for α (relative to an
infinite product of N(0, 1/n)-distributions) is equal to

`n(α) = −1

2

∞∑
i=1

(
log
(

1 +
n

i1+2α

)
− n2

i1+2α + n
X2
i

)
.

Let’s denote by α̂n the maximizer of the likelihood function on the interval [D, 2D]. The MLEB posterior
is given by substituting α̂n for α in the posterior distribution:

Πα̂n(A|X) = Πα(A|X)
∣∣∣
α=α̂n

for measurable subsets A ⊂ `2.
The posterior distribution for fixed hyperparameter α > 0 is conditionally Gaussian, hence a natural choice
for the 1− γ-credible set is the `2-ball centered at the posterior mean with radius rn,γ(α):

Πα(θ : ‖θ − θ̂n,α‖ ≤ rn,γ(α)|X) = 1− γ.

Substituting α̂n for the hyperparameter α and (possibly) blowing up the ball by a constant multiplier L we
get the MLEB credible set

ĈEn (L) = {θ : ‖θ − θ̂n,α̂n‖ ≤ Lrn,γ(α̂n)}. (1)

We are interested in the frequentist coverage of the MLEB credible sets Pθ0(θ0 ∈ ĈEn (L)). As we have
already mentioned in the introduction, Robins and Van der Vaart [7] showed that there exist adaptive confi-
dence sets with good uniform coverage properties for β ∈ [D, 2D]. Unfortunately the MLEB credible sets
do not attain this good coverage property. For any given parameter β there exists a sequence θ0 ∈ Sβ(M)
for which the credible set has zero coverage asymptotically.

Theorem 0.1 (Theorem 3.1 in [8]). For an arbitrary sequence of positive integers nj satisfying n1 ≥ 2,
nj ≥ n4

j−1 and positive parameter K lets define the sequence θ0 = (θ0,1, θ0,2, ...) as

θ2
0,i =

{
Kn−1

j , if n1/(1+2β)
j ≤ i < 2n

1/(1+2β)
j for any j = 1, 2, ...,

0, else.
(2)

The constant K can be chosen such that for every L > 0 the coverage of the credible set ĈEn (L) defined in
(1) tends to zero along the sub-sequence nj .

A detailed description of the intuition behind the bad coverage property of the credible sets for the preceding
“inconvenient” truth can be found in [8]. We just mention in addition that even the prior knowledge on the
smoothness (β ∈ [D, 2D]) can not fix the poor performance of the method. A technical explanation relies
on the incorrect bias-variance trade-off, caused by the different behaviour of the KL divergence and the
L2-loss function.

Risk-based empirical Bayes method
To correct the sub-optimal behaviour of the preceding adaptive Bayesian techniques we provide a new em-
pirical Bayes method which gives adaptive credible sets with optimal coverage. The approach relies on
minimizing the mean squared error of the posterior mean instead of maximizing the likelihood function.
The estimator applied in the new empirical Bayes method is based on [7].
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First we give an estimator for the squared bias B2
n(α) =

∑
i2+4αθ2

0,i/(i
1+2α +n)2 with fixed hyperparam-

eter α:

B̂2
n,kn(α) =

kn∑
i=1

(Xi − θ̂n,i(α))2 − i2+4α

n(i1+2α + n)2
=

kn∑
i=1

i2+4α

(i1+2α + n)2
(X2

i −
1

n
),

where the sequence kn = n1/(1/2+2D). Then the estimator α̂n is defined as

α̂n = inf{α ≥ D : B̂n,kn(α) ≥ n−2α/(1+2α)} ∧ (2D − C0/ log n),

for some large enough constantC0 specified later. Plugging in the estimator α̂n into the posterior distribution
we get the risk-bases empirical Bayes (REB) posterior

Πα̂n(A|X) = Πα(A|X)
∣∣∣
α=α̂n

for measurable subsets A ⊂ `2. Similarly to the MLEB method we define the REB credible sets as

ĈRn (L) := {θ : ‖θ − θ̂n,α̂n‖ < Lrn,γ(α̂n)}, (3)

where L is a scaling parameter. The so constructed REB credible sets have in the minimax sense optimal
size across the collection of Sobolev balls Sβ(M) with β ∈ [D, 2D] and have uniformly good coverage
properties over the largest Sobolev ball SD(M).

Theorem 0.2 (Theorem of 2.3 [9]). For arbitrary positive parameters D,M and γ there exist constants C0

and L such that the REB credible sets defined in (3) have at least 1− γ coverage uniformly

inf
θ0∈SD(M)

Pθ0
(
θ0 ∈ ĈRn (L)

)
≥ 1− γ,

and the radius of the credible sets are rate optimal in a minimax sense for all β ∈ [D, 2D]

inf
θ0∈Sβ(M)

Pθ0
(
rn,γ(α̂n) . n−β/(1+2β)

)
→ 1.

Numerical investigation
We give a short simulation study to illustrate that the new empirical Bayes method provides better confidence
sets than the MLEB method. Consider the continuous representation of the Gaussian white noise model

Xt =

∫ t

0

f0(s)ds+ 1/
√
nWt, t ∈ [0, 1],

where the function f0 =
∑
θ0,i

√
2 sin(iπt) and Wt is the Brownian motion. The Fourier coefficients θ0 are

taken to be θ0,i = cos(i)i−1.4 for i = 10, ..., 15; θ0,i = 4 cos(i)i−1.4 for i = 150, ..., 200; θ0,i = i−1.4,
for i = 44j , ..., 2 ∗ 44j , j = 2, ..., and θ0,i = 0 else. Furthermore we choose a priori the regularity interval
[D, 2D] to be [0.6, 1.2].
In the top line of Figure 1 we plot the MLEB credible sets given in (1), while in the bottom line stands the
REB credible sets with sample sizes n = 103, 5 ∗ 104 and 5 ∗ 106. We note that we did not blow up the
credible sets by a factor L > 1 in any of the two cases. The true function is plotted by black, the posterior
mean by blue and the gray area is the collection of the 95% closest draws to the posterior mean from the
posterior distribution. One can see that the MLEB credible sets have poor coverage property for n = 103

and n = 5 ∗ 104. The posterior mean is far away from the truth and in the meanwhile the credible sets
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Figure 1: MLEB and the REB credible sets

are too narrow. Finally we note that the REB credible sets contain the truth in all cases, correcting the
over-confidence of the MLEB method.

Acknowledgements: We would like to thank the referee for his/her useful comments in substantially im-
proving the presentation of this article.

Bibliography

[1] Castillo, I. Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat. 2 (2008),
1281–1299.

[2] Hengartner, N. W., and Stark, P. B. Finite-sample confidence envelopes for shape-restricted densities.
Ann. Statist. 23, 2 (1995), 525–550.

[3] Low, M. G. (1997). On nonparametric confidence intervals.Ann. Statist. 25(6), 2547–2554.
[4] Knapik, B. T., Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. Bayes procedures for adaptive

inference in inverse problems for the white noise model. available on http://arxiv.org/abs/1209.3628.
[5] Knapik, B. T., van der Vaart, A. W., and van Zanten, J. H. Bayesian inverse problems with gaussian

priors. Ann. Statist. 39, 5 (2011), 2626–2657.
[6] Picard, D., and Tribouley, K. Adaptive confidence interval for pointwise curve estimation. Ann. Statist.

28, 1 (2000), 298–335.
[7] Robins, James and van der Vaart, Aad W. (2006). Adaptive nonparametric confidence sets. Ann. Statist.

34, 229–253.
[8] Szabo, B. T., Vaart, A. W., and Zanten, J. H. (2013). Frequentist coverage of adaptive nonparametric

Bayesian credible sets. available on http://arxiv.org/abs/1310.4489.
[9] Szabo, B. T., Vaart, A. W., and Zanten, J. H.(2013). Honest Bayesian confidence sets for the L2-norm.

preprint. available on http://arxiv.org/abs/1311.7474.





18TH EUROPEAN YOUNG STATISTICIANS MEETING 119

Model selection approach for genome wide association studies in
admixed populations

Piotr Szulc∗

Department of Mathematics and Computer Science
Wroclaw University of Technology, Poland

Abstract
The main purpose of genome wide association studies (GWAS) is the identification of genes responsible for
quantitative traits (Quantitative Trait Loci, QTL) or disease causing genes in human populations. Localiza-
tion of genes in such outbred populations is relatively difficult. We present this problem and two criteria,
mBIC and mBIC2, which were successfully used in GWAS.
However, it turns out that we can find much more influential genes if we perform GWAS in admixed pop-
ulation, obtained as a result of interbreeding between previously separated ancestral populations. In that
case, apart from genotypes, we have information about the origin of genome’s fragments. We introduce
modification of mBIC and mBIC2, which can use this additional information. Finally, we present results of
simulations which confirm that we are able to identify more influential genes in those populations.

Keywords: linear regression, model selection criteria, GWAS, admixed population
AMS subject classifications: 62J05, 92D20

1 Introduction
In the recent time we can observe a very popular problem in regression, so called sparsity, which denotes a
situation when we have a very large number of variables, often bigger than the sample size, but the number
of significant predictors is small. This situation takes place e.g. in genetics, in the problem of localizing
genes responsible for quantitative traits (Quantitative Trait Loci, QTL). We have to deal with a large number
of markers (fragments of DNA which can occur in different variants for different individuals and their
genotype can be identified). Usually, we observe two versions (alleles) of markers, let’s say A and B, but
when we consider diploid organisms in which chromosomes appear in pairs, a genotype of j-th marker for
i-th individual can be coded in the following way:

xij =

 −1 if AA
0 if AB
1 if BB

(1)

When we have values of a trait of interest, we can use the linear regression and find markers which are
related to the trait. If these markers are correlated with genes influencing the trait (what usually means that
they occur near these genes), we can localize them.
In practice, the hardest is to localize QTL or disease causing genes in human populations, so called Genome
Wide Association Studies (GWAS), because correlations between genotypes of QTL and neighbouring
markers can be very small. Therefore, we need a large number of densely spaced markers. Relatively
∗e-mail: piotr.a.szulc@pwr.wroc.pl
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easier is to localize genes in experimental populations (plants and animals), in which we interbreed highly
related individuals. Thanks to that, correlations between markers are notably higher. Much more about
localizing genes in experimental populations can be found in [9] or [8] and information about GWAS is
provided in [3].
The problem of a low correlation in genome wide association studies can be substantially decreased if one
performs GWAS in admixed populations. These populations originate from a recent interbreeding between
two previously isolated populations, let’s say P1 and P2. In this case we have additional information on the
ancestry states of a given region of a genome, which for diploid organisms we can present in the following
way:

zij =

 −1 if P1P1

0 if P1P2

1 if P2P2.
(2)

We can assume that each marker comes either from population P1 or P2. Correlation between ancestry
states is much higher than between genotypes of markers, unfortunately correlation between a genotype and
an ancestry state is much lower. However, we will show that if we combine both pieces of information, we
can find more significant genes.

2 Modified versions of Bayesian Information Criterion
We aim to choose the best linear regression model in the situation when the number of explanatory variables
p is very large, bigger than the samples size n. Statistics knows a lot of criteria which can be used to find
a suitable model, unfortunately classic versions like Akaike Information Criterion (AIC, [1]) or Bayesian
Information Criterion (BIC, [13]) are inappropriate in our situation. This is due to the fact that they are
derived based on the assumption that n goes to infinity, while p remains constant. This is obviously not a
good assumption when p is larger than n and it was shown that classical criteria overestimate the number of
significant regressors k[11].
To construct a suitable criterion, we need some a priori knowledge about the number of nonzero coefficients
k because when p is larger then n, the least squares estimators for regression coefficients are not unique and
regression models are not identifiable. In applications in genetics we usually assume the sparsity, i.e. that
k/n is very small. This assumption was used to construct modifications of BIC: mBIC [5], mBIC2 ([11],
[12]) and EBIC [7]. Further we will deal with two of them, mBIC and mBIC2, and show how to use them
in the problem of admixed populations.

2.1 mBIC and mBIC2
We are interested in the following linear regression model:

yi =

p∑
j=1

βjxij + εi, i = 1, ..., n, (3)

where yi is a trait value for i-th individual, p is the number of available markers, xij is a genotype of j-th
marker for i-th individual and εi’s are independent variables with the normal distribution N (0, σ2). Let
s denote a subset of {1, ..., pn} (a model) of a size v(s). If we want to find nonzero coefficients, we can
use one of the most popular criterion, Bayesian Information Criterion, which suggests choosing the model
minimalizing the formula

BIC(s) = n ln(RSS(s)) + v(s) lnn, (4)

where RSS(s) means residual sum of squares for the model s.
BIC was derived in a Bayesian context and it is used to approximate the logarithm of the posterior probability
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of the given model. This probability is proportional to the product of the integrated likelihood of the data
given the model and the prior probability of the model. BIC neglects this second factor and as a result it
assigns the same prior probability to all models. It has undesirable consequences in the context of localizing
genes because if we consider nonzero coefficients, the prior distribution on their number k is binomial
B(p, 1/2). It leads to the overestimation of the number of predictors because this distribution is concentrated
almost entirely on [p/2− 2

√
2, p/2 + 2

√
2].

Two modification of BIC dealing with that problem were proposed:

mBIC(s) = n ln(RSS(s)) + v(s) lnn+ 2v(s) ln
(p
c
− 1
)
, (5)

mBIC2(s) = n ln(RSS(s)) + v(s) lnn+ 2v(s) ln
p

c
− 2 ln(v(s)!), (6)

where c = Ek, i.e. the expected value of k. The first modification is a result of the assumption that k has the
binomial distribution but with mean equals c/p. The additional penalty in mBIC is closely related to the Bon-
ferroni correction for multiple testing ([6], [11]), which is substantially worse than the Benjamini-Hochberg
procedure [4]. The second modification is a product of exploiting good properties of B-H procedure.
There are quite a few papers which show good properties of those criteria, both theoretical and practical ([2],
[6], [11], [14], [15]). If c is unknown, one can use c = 4 to control Family Wise Error Rate at the level of
10% (mBIC) and False Discovery Rate at the same level (mBIC2).

2.2 Admixed populations
Now we want to apply mBIC and mBIC2 in admixed populations. In this case our target is to fit the
regression model

yi =

p1∑
j=1

βjxij +

p2∑
k=1

γkzik + εi, i = 1, ..., n, (7)

so we treat ancestry states as additional variables. Adequate criteria change to the following forms:

mBIC(s) = n ln(RSS(s)) + (v1(s) + v2(s)) lnn+ 2v1(s) ln

(
p1

c1
− 1

)
+

+ 2v2(s) ln

(
p2

c2
− 1

)
, (8)

mBIC2(s) = n ln(RSS(s)) + (v1(s) + v2(s)) lnn+ 2v1(s) ln
p1

c1
− 2 ln(v1(s)!)+

+ 2v2(s) ln
p2

c2
− 2 ln(v2(s)!), (9)

where v1(s) means the number of markers in the model, v2(s) is the number of ancestry states in the model
and p1 denotes the number of all markers. The problem is with p2 because due to high correlation it is not a
good idea to treat p2 as the total number of ancestry states. Instead, we can calculate so called the effective
number of tests peff for ancestry variables and p2 will be that value. The effective number of tests is the
number of independent single tests which we can perform to control FWER at the level α. According to
[10], we can write

α = PH0

(
maxj∈{1,...,p}LRTj > c

)
≈ 1− exp(−2[1− Φ(

√
c)])−

− 0.02ptL
√
cφ(
√
c)ν
(√

0.02tLc
)
, (10)
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where LRT is the likelihood ratio test, Φ is the normal distribution, φ is the normal density and ν(x) ≈
exp(−0.583x). Possibility of using this formula results from appropriate correlation between ancestry states,
equal to exp(−tL), where L is the distance between markers (in Morgans) and t denotes an admixing time
for a given individual. If we do not know admixing times and distances between markers are different, we
suggest replacing tL with − ln r, where ln r is the average of the logarithms of the correlations between
neighbouring ancestry variables.
On the other hand, if we perform peff independent tests, we can write

α = PH0

(
max

i∈{1,...,peff}
LRTj > c

)
≈ 1−

[
1− 2

(
1− Φ(

√
(c))

)]peff
. (11)

If we compare 10 and 11, we get

p2 = peff =
ln(1− α)

ln (2Φ(
√
c)− 1)

. (12)

3 Simulations
We performed simulations on the data which were very close to real data. We had 482906 markers (22 chro-
mosomes) and 482906 ancestry states, all for 1000 unrelated individuals. We chose 20 causal markers which
were differed in the linkage disequilibrium (LD; this characteristic says how much a marker is correlated
with neighbours) and the ancestry frequency (AF; it says how much an ancestry state is correlated with the
corresponding marker). We simulated values of a trait according to the model

yi =

20∑
j=1

0.5xij + εi, i = 1, ..., 1000, (13)

where εi ∼ N (0, 1). Then we removed these causal markers from the design matrix and looked for the best
linear model, using the strategy described in [12]. We considered the identified marker a true discovery if
the correlation between this marker and the corresponding causal marker was greater than 0.5. Results are
shown in Table 1. In the first design we used only genotypes of markers and in the second design we added
ancestry states. The power is calculated as the number of true discoveries divided by 20 and averaged over

First design Second design
mBIC mBIC2 mBIC mBIC2

Power 0.427 0.534 0.670 0.723
FDR 0.023 0.109 0.040 0.082

Table 1: Power and FDR

100 replicates.
Our simulations show that the power of GWAS in admixed population can be increased if we add information
about ancestry state to the regression model (and FDR stays at the low level). We were able to identify genes
which have low LD (so it was impossible to find them using only genotypes) but high AF. What is more,
because of these new genes, our model was better so other genes were found more often. FDR for mBIC2 is
higher than for mBIC, what was expected (the penalty in mBIC2 is smaller).

Acknowledgements: This research was supported by NCN grant 2012/05/N/ST1/03136. I am working
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Abstract
It is always possible to construct a d-dimensional non-normal distribution having any finite number of normal
projections and all (d − 1) dimensional marginals normal. Also, there can exist d-dimensional non-normal
distribution with all conditional distributions being normal. In the present note we introduce two new char-
acterizations of the classical d-dimensional normal distribution. (1) Having normal conditionals and a finite
number of normal projections uniquely characterizes the classical d-dimensional normal distribution. (2)
Having normal conditionals and each of (d − 1) coordinate random variables having a one dimensional
normal distribution is sufficient to ensure that the d-dimensional distribution has to be classical normal.

Keywords: linear transformation, normal conditionals, normal marginals, non-normal distributions
AMS subject classifications: 62E10 and 62E15

1 Introduction
Classical distribution theory in higher dimensions is largely focused on the multivariate normal distribution.
For the multivariate normal density it is well known that every marginal distribution, every conditional
distribution and all linear transformations are also normal. Besides, it is also obvious that these properties
chosen individually are not sufficient conditions to characterize the multivariate normal density. There are
many multivariate non-normal distributions which share some of these features with the classical normal
distribution. So, it is interesting to find combinations of these characteristics which will be sufficient to
characterize the classical normal density. In the present article we review some available results in this
direction and contribute two new characterization results involving normal conditional distributions. It is
to be expected that similar results can be obtained when dealing with distributions with conditionals in
arbitrary exponential families. As an illustration, two results will be presented dealing with distributions
with exponential conditionals.
In the following section we present two examples where a non-normal bivariate density shares common
features with the classical bivariate normal distribution. Stoyanov [5] is a useful source of other examples of
multivariate non-normal distributions having classical normal properties.

1.1 Counterexample: Non-normal bivariate distribution with marginals, sum and
difference which are normal

Let (X1, X2) be a bivariate random variable with density

fε(x1, x2) =
1

2π
e−

1
2 (x2

1+x2
2)
{

1 + ε(x3
1x2 − x3

2x1)e−
1
2 (x2

1+x2
2)
}

(1)

∗Corresponding author, e-mail: bgmanjunath@gmail.com
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where

|ε| ≤ e2

4
.

Now, consider the following linear combination of the coordinates of (X1, X2), X = X1 sin θ + X2 cos θ.
The density of X is

gθ(x) =
1√
2π
e−

1
2x

2

{
1−
√

2 ε sin(4θ)

32
(4x4 − 12x2 + 3)e−

1
2x

2

}
. (2)

Clearly, X is non-normal. It may be noted here that X1, X2, X1 + X2 and X1 − X2 are normal, but this
does not imply that (X1, X2) is bivariate normal. Hence, marginal normality and finite number of normal
projections are not sufficient conditions to characterize the multivariate normal distribution.
We refer to Hamedani and Tata [3] for a closely related bivariate normal characterization, that is, bivariate
normality is completely determined by a countable dense number of one-dimensional normal projections.
Another important reference is Manjunath and Parthasarathy [4] dealing with a generalization of the charac-
terization in [3].

1.2 Counterexample: Non-normal bivariate density for which one set of condition-
als and one marginal are normal

Let (X1, X2) be a bivariate random variable with density

f(x1, x2) ∝ (1 + x2
2)

1
2 exp

{
−1

2

[
x2

1x
2
2 + x2

1 + x2
2

]}
. (3)

In this example, X2 ∼ N(0, 1) and X1|X2 = x2 ∼ N
(

0, 1
1+x2

2

)
for all x2. But note that the conditional

distribution of X2 given X1 is not normal. This confirms the fact that marginal normality and one family of
conditionals being normal are not sufficient to guarantee joint normality.
Bhattacharyya [2] observed that, even if one assumes that both families of conditional densities (ofX1 given
X2, and of X2 given X1), bivariate normality is not guaranteed. See Bhattacharyya [2] and Arnold et al. [1]
for discussion of several sufficient conditions to characterize the classical bivariate and multivariate normal
distribution within the class of distributions with normal conditionals.

2 Normal Conditionals

2.1 Bivariate normal conditionals
As in Arnold et al. [1], assume that a joint density f(x, y) has all conditionals in the univariate normal
family. Then writing the joint density as a product of a marginal and a conditional density in both possible
ways, we have

f1(x)

σ2(x)
exp

[
−1

2

(
y − µ2(x)

σ2(x)

)2
]

=
f2(y)

σ1(y)
exp

[
−1

2

(
x− µ1(y)

σ1(y)

)2
]
, (4)

where f1(x) > 0 and f2(y) > 0 are marginal densities and µ2(x), σ2(x), σ1(y) and µ1(y) are functions of
marginal variables. By solving above equation, the joint density of f(x, y) can be expressed as:

f(x, y) = exp

(1, x, x2)

 m00 m01 m02

m10 m11 m12

m20 m21 m22

 1
y
y2

 (5)
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where the constants {mij : i, j = 0, 1, 2} are chosen to ensure nonnegativity of f(x, y) and its marginals
and the integrability of those marginals. To guarantee integrability the coefficients must satisfy one of the
two following sets of conditions: (1) m22 = m12 = m21 = 0, m20 < 0,m02 < 0 and m2

11 < 4m02m20.
(2) m22 < 0, 4m22m02 > m2

12 and 4m20m22 > m2
21. Condition (1) yields the classical bivariate normal

density.

2.2 Multivariate extension
Let X be a d-dimensional random variable which has normal conditionals. Its joint density can be written
in the form

fX (x) = exp

∑
i∈Td

mi1...idx
i1
1 ...x

id
d

 , (6)

where Td is the set of all vectors of 0’s, 1’s and 2’s of dimension d and i = (i1, .., id)
T each ij ∈ {0, 1, 2},

j = 1, 2, ..., d. There are certain constraints on the mi1...id ’s in order to guarantee integrability, just as there
were in dimension 2.

3 New characterizations of the multivariate normal
In this section we present the two new characterizations of d-dimensional classical normal density within
the class of d-dimensional distributions with normal conditionals. We begin with a useful Lemma.

Lemma 3.1. Let (X1, X2, .....Xm, Xm+1, ....., Xd) have a normal conditionals distribution (of the form
(6)). The following are equivalent:

(1) (X1, X2, ..., Xm) has a normal conditionals distribution.

(2) (X1, X2, .....Xm) and (Xm+1, ....., Xd) are independent and (Xm+1, ....., Xd) also has a normal con-
ditionals distribution.

Theorem 3.1. Let X = (X1, ..., Xd)
T have a normal conditionals density of the form (6). If each of the

coordinate random variables X1, X2, .., Xd−1 has a one dimensional normal distribution then X has a
d-dimensional classical normal distribution.

An alternative necessary and sufficient condition for a d-dimensional density with normal conditionals to
have a classical normal distribution is to have all d of its (d − 1) dimensional marginals of the classical
normal form.

Theorem 3.2. Let X = (X1, ..., Xd)
T be a d-dimensional random vector which satisfies the following

conditions: (1) it has a normal conditionals density of the form (6); (2) for some vector a = (a1, a2, ..., ad)

with at least (d− 1) of its coordinates being nonzero,
∑d
i=1 aiXi has a normal distribution. Then,X has a

classical d-dimensional normal density.
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4 Exponential conditionals
In this section we present a new characterization of a d-dimensional exponential density.
Let X be a d-dimensional random variable having exponential conditionals, then the joint density can be
written in the form

fX (x) = exp

−∑
i∈Td

λi1...id
(
xi11 ...x

id
d

) , (7)

where Td is the set of all vectors of 0’s and 1’s of dimension d and i = (i1, .., id)
T each ij ∈ {0, 1},

j = 1, 2, ..., d and the parameters λi1...id are nonnegative.

Lemma 4.1. If (X1, ..., Xd) has an exponential conditionals distribution of the form (7) and X1 is expo-
nential then X1 and (X2, ..., Xd) are independent and (X2, ..., Xd) has a (d− 1) dimensional exponential
conditionals distribution

Theorem 4.1. Let X = (X1, ..., Xd) have an exponential conditionals distribution of the form (7). If each
of the coordinate random variablesX1, X2, .., Xd−1 has a one dimensional exponential distribution thenX
has a d-dimensional distribution with independent exponential marginals.
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Abstract
In clinical and epidemiological research, increasing importance has been given to the competing risk ap-
proach and this methodology has been referred as the rule rather than the exception in follow-up studies [1].
It is an extension of classical survival analysis.
In the presence of competing risks, two types of analysis can be performed: modelling the cause-specific
hazard and modelling the hazard of the subdistribution [5, 8]. The context of the research question is the
main determinant for the choice of an appropriate statistical model. When the hazard of the subdistribution
is analysed, the goal is to compare the probability of the event of interest and therefore can be translated into
actual numbers of patients with this event. Comparing the cause-specific hazards gives an insight into the
biological process [7, 8, 9].
In peritoneal dialysis programs, several endpoints can be observed: death, transfer to haemodialysis and renal
transplantation. In our study, we were interested in modelling the time from the entrance in the peritoneal
dialysis program until the occurrence of the event of interest, death, in the presence of competing risks
(transfer to haemodialysis and renal transplantation). Regression models based on cause-specific hazard and
hazard of the subdistribution were performed, considering time-independent covariates (gender, automatic
peritoneal dialysis, first renal replacement therapy, reason for peritoneal dialysis), time-varying covariates
(age and diabetes) and time-dependent covariates (peritonitis) and the estimates obtained by such models
were examined and discussed.

Keywords: Competing risks, cause-specific hazard, hazard of the subdistribution, peritoneal dialysis.
AMS subject classifications: 62P10

1 Introduction
In survival analysis, the problem of competing risks occurs when a patient may experience only one event
of a set of K possible events. Several definitions of competing risks can be considered. Gooley et al. [4]
defined this concept as the situation where one type of event either precludes the occurrence of another
event or fundamentally alters the probability of occurrence of this other event. When we are interested in
evaluating a peritoneal dialysis program, we are in the presence of competing risk problem because patients
can be experienced several events, such as death, transfer to haemodialysis or renal transplantation.
In the presence of competing risks, two main approaches associated with a two different hazard can be con-
sidered: testing the ‘pure’ effect by ignoring the competing risks (cause-specific hazard) and including the
competing risks (cumulative incidence function or hazard of the subdistribution). Cause-specific hazard and
cumulative incidence function are the most important quantities in competing risks problem. While the first
quantity provides information about instantaneous failure rate from a particular event cumulative incidence
∗Corresponding author, e-mail: laetitiateixeir@gmail.com



18TH EUROPEAN YOUNG STATISTICIANS MEETING 130

curve estimates the chance of ultimately experiencing that event [2]. These two approaches give different
information about the effect of a covariate and depending on the clinical or medical research question, we
may want to compare the cause-specific hazard or the cumulative incidence functions [9].
In this work, the objective is to perform and to discuss regression models based on cause-specific haz-
ard and hazard of the subdistribution, considering time-independent (gender, Automatic Peritoneal Dialysis
(APD), first renal replacement therapy, reason for peritoneal dialysis (PD), time-varying covariates (age and
diabetes) and internal time-dependent covariates (peritonitis). The regression models were applied in all
consecutive incident end-stage renal disease patients starting peritoneal dialysis between October 1985 and
February 2013 in Peritoneal Dialysis Unit, Nephrology Department, CHP – Santo António Hospital, Porto,
Portugal (n=444). Patient outcome was defined as the earliest event among: death, transfer to haemodialysis
or renal transplantation. In the present study, the interest is the analysis of patient survival and, in this case,
the event of interest was death and the competing risks were transfer to haemodialysis and renal transplan-
tation. Patients without any of these outcomes were censored at the date of their last recorded visit or at the
end of the study period (February 2013).

2 Regression modelling in competing risks setting
Two types of regression models were considered in this work, based on two types of hazard: cause-specific
hazard (CSH) and cumulative incidence function (or hazard of the subdistribution (SH)). The CSH function
is the principal estimable quantity in competing risks setting and is defined by the instantaneous risk of dying
from a particular cause k given that the subjects is still at risk (i.e. the subjects is still alive) at time t:

hk(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, C = k | T ≥ t)
∆t

The unit of hk is number of events per person-time unit and there are as many CSH functions as there are
types of events [10]. As the CSH definition conditions on T ≥ t, the presence of other events affects the
’risk set’ [10], that is, all patients with any event before time t are removed from the risk set at that time point
[7].
Cumulative incidence function describes the actual risk of experiencing the event of interest k until time t
[7] it is defined as the cumulative probability of event k having occurred in the presence of other competing
events, i.e., is the probability that an event of type i occurs at or before time t:

Fk(t) = P (failure time T ≤ t, cause = k) =

∫ t

0

S(u)hk(u)du

Cumulative incidence function of event k is defined as a function of both the probability of not having failed
from some other event first, S(u), up t time t and the CSH for the event of interest at that time. Therefore,
cumulative incidence estimator for an event of type k depends not only on the number of individuals who
have experienced this type of event but also on the number of individuals who have not experienced any other
type of event [9]. A graphical display of the estimated cumulative incidence functions for all competing
events is a key summary of the competing risks process (similar to the Kaplan-Meier curve in survival
analysis) [7]. The hazard associated with the cumulative incidence function is the SH and can be interpreted
as the instantaneous risk of dying from a particular cause k given that no other events has occurred thus far
(i.e. the subject is still alive at time t) k [9] and it is defined as:

γk(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, C = k | {T ≥ t or (T ≤ t and C 6= k)})
∆t

The condition in the curled brackets expresses the fact that the event of interest did not happen until t, but
it is possible that the observation for a subject has stopped because a competing event was observed [8]. To
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analyse CSH, usual techniques for the time to event analysis can be employed, such as Cox proportional
hazards model:

hk(t, x) = hk0e
∑K
i=1 βixi

If there are r events at the time points t1 < t2 < . . . < tr−1 < tr and Rj is the risk set at time tj then the
partial likelihood to be maximized is:

L(β) =

r∏
j=1

(
exp(βxj)∑
i∈Rj exp(βxi)

)

and Rj = {i : ti ≥ tj} represent the risk set. The quantity exp(β) is called the CSH ratio (CSHR) and
represents the increase of the CSH due to one unit increase of the covariate x. The cause k-specific hazard
gives the rate of event k per time unit for individual who are still alive [1]. Regression modelling for estimat-
ing the association between the cumulative incidence function and covariates is complicated because these
models have complex non-linear functional forms for the effect of the covariates on the cumulative incidence
function [9]. The model proposed by Fine and Gray [3] is a direct approach assuming a proportional hazard
form for the ’hazard rate’ of the subdistribution function [10] and it is based on:

γk(t, x) = γk0(t)eβx

The partial likelihood was constructed as:

L̃(β) =

r∏
j=1

(
exp(βxj)∑

i∈R̃j ωjiexp(βxi)

)

The differences in the partial likelihood defined for the hazard of the subdistribution comparing with the
likelihood defined for the CSH are the inclusion of weights at the denominator and the risk set is defined
differently. The observation for which the competing risk event is observed is in the risk set at all times
(R̃ = {i : ti ≥ tj or ti ≤ tj and the subject had a competing risk event}). The interpretation for exp(β) in
this framework is similar: it represents the increase of the SH due to one unit increase of x [8].
In competing risks setting, the covariates may affect the CSH and SH differently [1]. The results obtained in
the SH model are influenced by the way the competing risks were distributed. If patients with a characteristic
were more likely to have a competing risk, the event of interest could not be observed and therefore the
effect of this covariate would be diminished [9]. In this work, we consider two types of covariates: time-
independent covariates and time-dependent covariates. A time-independent covariate is a variable whose
value for a patient remains constant over time (e.g. gender, APD, first renal replacement therapy, reason
for peritoneal dialysis). A time-dependent covariate is defined as any covariate whose value for a given
subject may differ over time. Time-dependent covariates can be divided into several types and we consider
only two different types of time-dependent covariates: defined and internal time-dependent covariates. Most
defined time-dependent covariates, also called time-varying covariates, are of the form of the product of
a time-independent variable multiplied by some function of time (e.g. diabetes and age). Internal time-
dependent covariates are covariates whose values may change over time and the reason for a change depends
on “internal” characteristics or behaviour specific to the individual (e.g. peritonitis is a covariate which start
with value=0 and may increase to 1, if the patient experiences a peritonitis episode) [6].

3 Application
Survival analysis methods taking competing risks into account were performed for analysing patient survival.
First, estimates of cumulative incidence function were calculated. Regression models taking competing risks
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into account (Cox CSH model and Fine and Gray model based on SH model) were carried out to analyse the
effect of covariates in the patient survival. Variable associated with the event of interest (death) at the 10%
significance level on the basis of univariate models were introduced in the multivariable models. Diabetes
and age were tested as time-varying covariates and peritonitis as internal time-dependent covariate. In the
case of time-varying covariate, the covariate defined by the interaction between covariate and time (function
identity) was only included if statistically significant.
All analyses were performed with R software using the packages coxph and cmprsk and significance level
for multivariable models was set at 0.05.

3.1 Results
The sample comprises 444 patients, 59.7% women (n=265) and the mean age was 48.1 years. Transfer
to haemodialysis was the main reason for PD discontinuation, followed by renal transplantation (n=119,
26.8%) and death (n=101, 22.7%). At the end of the study period, 15.5% of the patients were still on PD.
59.2% were PD first (i.e. the first renal replacement therapy was PD), 23.4% had diabetes and 60.5% had
started PD by option. Finally, 51.1% of patients have experienced at least one peritonitis episode.
Analyzing the cumulative incidence estimates for the event of interest, the probabilities of death by 1, 3 and
5 years after starting PD were 0.065, 0.17 and 0.23, respectively.
In the SH model, significant risk factors for death are: (1) age as time-independent covariate (SHR=1.05,
95% CI 1.03-1.06); (2) first treatment (haemodialysis, considering peritoneal dialysis as reference category
- SHR=1.66, 95% CI 1.11-2.49); (3) reason for peritoneal dialysis (SHR=0.55, 95% CI 0.37-0.81); (4)
diabetes as time-independent covariate (SHR=2.04, 95% CI 1.36-3.06).
According to the results obtained in the univariable CSH model, the significant risk factors for death are: (1)
APD (CSHR=0.63, 95% CI 0.52-0.78); (2) first treatment (haemodialysis, considering peritoneal dialysis as
reference category - CSHR=1.28, 95% CI 1.02-1.62); (3) reason for peritoneal dialysis (CSHR=0.79, 95%
CI 0.64-0.97); (4) diabetes as time-independent covariate (CSHR=1.27, 95% CI 1.01-1.59); (5) peritonitis
as time-dependent covariate (CSHR=1.56, 95% CI 1.01-2.44).
In multivariable SH model, the final model (adjusted for gender) includes as significant risk factors for death:
(1) age as time-independent covariate (SHR=1.05, 95% CI=1.03-1.06); (2) diabetes as time-independent
covariate (SHR=2.04, 95% CI=1.34-3.11); (3) reason for peritoneal dialysis (SHR=0.62, 95% CI=0.42-
0.93). Risk of death increased with age, and was also higher for diabetic patients and for patients included
in the peritoneal program because of an access failure.
The final multivariable CSH model (adjusted for gender) found diabetes (time-independent covariate -
CSHR=1.30, 95% CI 1.03-1.66) and reason for peritoneal dialysis (CSHR=0.77, 95% CI 0.62-0.96) as
significant risk factor for death and, additionally, DPA (CSHR=0.64, 95% CI 0.52-0.79).

4 Conclusion
In this work, we present two different approaches in the analysis of time-to-event data in the presence of
competing risks and each method has different advantages. When we estimate the cumulative incidence
function or its hazard (SH), the main advantages are: it is a direct approach; it compares the observed
probabilities of events or the observed rates of events; it does not assume independence between the types
of events. In the case of the comparison of the CSH, the advantages are: it gives insight into the biological
mechanism; it is invariant to the size of the competing risks [9].
Different results were obtained according the type of hazard considered and the decision about the choice
of the model depends on the research question. CSH may be more relevant when the disease aetiology
is of interest, since it quantifies the event rate among the ones at risk of developing the event of interest.
Cumulative incidences are easier to interpret and are more relevant for the purpose of prediction [1].



18TH EUROPEAN YOUNG STATISTICIANS MEETING 133

Bibliography

[1] Andersen, P.K., Geskus, R.B., de Witte, T. and Putter, H. (2012). Competing risks in epidemiology:
possibilities and pitfalls. International Journal of Epidemiology. 41(3), 861–870.

[2] Bajorunaite, R. and Klein, J.P. (2008). Comparison of failure probabilities in the presence of competing
risks. J Stat Comput Sim. 78(10), 951–966.

[3] Fine, J.P. and Gray, R.J. (1999). A proportional hazards model for the subdistribution of a competing
risk. J Am Stat Assoc. 94(446), 496–509.

[4] Gooley, T.A., Leisenring, W., Crowley, J. and Storer, B.E. (1999). Estimation of failure probabilities in
the presence of competing risks: new representations of old estimators. Stat Med. 18(6), 695–706.

[5] Klein, J.P. (2006). Modelling competing risks in cancer studies. Stat Med. 25(6), 1015–1034.
[6] Kleinbaum, D.G. and Klein, M. (2005). Survival Analysis: A Self-Learning Text, Springer Verlag, New

York.
[7] Koller, M.T., Raatz, H., Steyerberg, E.W. and Wolbers, M. (2012). Competing risks and the clinical

community: irrelevance or ignorance? Stat Med. 31(11), 1089–1097.
[8] Pintilie, M. (2007). Analysing and interpreting competing risk data. Statist. Med. 26(6), 1360–1367.
[9] Pintilie, M. (2006). Competing risks. A practical perspective., John Wiley and Sons, New Jersey.
[10] Varadhan, R., Weiss, C.O., Segal, J.B., Wu, A.W., Scharfstein, D. and Boyd, C. (2010). Evaluating

Health Outcomes in the Presence of Competing Risks A Review of Statistical Methods and Clinical
Applications. Med Care. 48(6), S96–S105.





18TH EUROPEAN YOUNG STATISTICIANS MEETING 135

Mixture Lorenz curves. Three new models
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Abstract
The Lorenz curve is one of the most investigated and also significant tool in the study of distribution and
inequality of income. The main difficulty in finding a good analytical form is the lack of fitting on some
intervals, especially in the tail of the function. Mixture parametric approach may overdue these problematical
issues by introducing better constraints.
In this paper, three new mixture Lorenz Curves are generated from initial Lorenz Curve families. In order to
analyze the inequality in the income distribution, for the third proposed curve the Gini indexes are obtained.

Keywords: parametric Lorenz curve, Gini index.
AMS subject classifications: 60E15, 91B82

1 Introduction. Lorenz Curve
In 1905 was published in ”Publications of the American Statistical Association” a short paper called ”Meth-
ods of measuring the concentration of wealth”. The article proposed a simple method, named later Lorenz
Curve, for the view of distribution of income or wealth according to the inequality or concentration of the
income gained. Max Otto Lorenz completed his doctoral study at the University of Wisconsin – Madison
without any reference to this paper, his only publication in a scientific journal.
The term ”Lorenz Curve” appears in the first statistical methods book from America. It was written by King
(1912)[7] primarily for the use of sociologists, political or administration economists. After 1970 the papers
of Atkinson (1970)[1] and Gastwirth (1971)[2] the interest on LC distribution increased.
LetL be the class of all non-negative random variable with finite mean and letX fromL, with the probability
distribution function f(x). Then the distribution function F (x) =

∫ x
0
f(y)dy will be the percent of units

with the income less or equal to x. The values of F (x) are between 0 and 1. We assume there exists the
mean of income, and has the form µ =

∫∞
0
f(x)dx. Then the first order moment of X will be F1(x) =

µ−1
∫ x

0
yf(y)dy and it represents the share of total income earned by a person with the income less or equal

to x. The graphic representation on the unit square that has F (x) on the abscissa and F1(x) on the ordinate
represents the Lorenz Curve, where x takes values from 0 to∞.
Definition 1.1. - Gastwirth (1971)[2] - Let X ∈ L with the density function F (·) and its inverse F−1(y) =
inf{x : F (x) ≥ y}. The Lorenz curve L(·) is defined by

L(p) = µ−1

∫ p

0

F−1(y)dy; 0 ≤ p ≤ 1. (1)

In fact, the Lorenz curve is the correlation between the percentage of population and the percentage of
income that they earn.
Kakwani (1980)[6] showed that the necessary properties of Lorenz Curve existence are:
∗Corresponding author, e-mail: mircea.mate@yahoo.com
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A. L(p) = 0, if p = 0;

B. L(p) = 1, if p = 1;

C. L′(0+) ≥ 0, for any 0 ≤ p ≤ 1;

D. L′′(p) ≥ 0, for any 0 ≤ p ≤ 1.

2 Parametric families of Lorenz Curves
Kakwani and Podder (1973[4], 1976[4]) proposed the first models to estimate parametric Lorenz curves.
In 1973 they introduced the curve L(p) = pγe−η(1−p), for 0 < p < 1 and η > 0; ; 1 < γ < 2. Using
the coordinate system proposed by Gini in 1932, of the form η = u+v√

2
and π = u−v√

2
, where 0 < u < 1,

Kakwani and Podder gave another definition of the curve v = L(u), characterized by η = aπα(
√

2 − π)β ,
with a ≥ 0, 0 ≤ α ≤ 1 and 0 < β ≤ 1.
Further, we propose three new models of parametric Lorenz Curves:

L1(p; θ, ν) =
1

ln(p)

pν − pθ
ν − θ , ν > θ (2)

L2(p; θ, k, ν) =
1

ln(p)

pν − pθ
ν − θ [1− (1− p)k], ν > θ; θ ≥ 0; ; 0 < k ≤ 1 (3)

L3(p; θ, ν) = pe−θ(2−p)
eν − eθ
ν − θ , ν > θ; θ ≥ 0 (4)

Particular cases:
After applying the limit on ν, with ν → θ we get

lim
ν→θ

L1(p; θ, ν) = pθ (5)

lim
ν→θ

L2(p; θ, ν) = pθ[1− (1− p)k] (6)

lim
ν→θ

L3(p; θ, ν) = pe−θ(1−p) (7)

Theorem 2.1. Assume that L1(p; θ, ν) is defined and continuous on [0, 1], with the second derivative L”(·).
The function L1(·) is a Lorenz Curve if and only if L1(0; θ, ν) = 0, L′1(0+; θ, ν) ≥ 0, L1(1; θ, ν) =
1, L′′1(p; θ, ν) ≥ 0, p ∈ (0, 1).

Proof:
lim
p→ 0
p > 0

L1(p; θ, ν) =
1

ν − θ lim
p→ 0
p > 0

(νpν − θpθ) = 0

lim
p→ 1
p < 1

L1(p; θ, ν) =
1

ν − θ lim
p→ 1
p < 1

(νpν − θpθ) = 1

L′1(0+) =
1

ν − θ lim
p→ 0
p > 0

ν(ν − 1)pν−1lnp+ pν−1 + (θ − 1)pθ−1

ln(p)
=
ν(ν − 1)2

2(ν − θ)
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lim
p→ 0
p > 0

p−1

(1− ν)p−ν
= 0.

The most known way to measure inequality using Lorenz curves is the Gini index. It was introduced in the
article ”Variability and Mutability” (1912) by Corrado Gini (1884-1965), an famous Italian sociologist and
demographer.
The Gini index is the ratio that has at the numerator (A) the area between egalitarian line and the Lorenz
Curve and at the denominator (A+B) all the area under the first bisector: G = A

A+B . A small value of
the Gini index indicates a smooth distribution of the income. In practice we won’t get the value 0 that
corresponds to equal incomes and 1 which means totally inequality among the income units.
A well known definition of the Gini index using Lorenz curve is G = 1− 2

∫ 1

0
L(p)dp. Using this formula

we obtained the Gini indexes of the new parametric Lorenz Curves. We state here the index for L3:

G3 = 1− 2

∫ 1

0

L3(p)dp.

G3 = 1− 2
1− eν−θ
θ2(θ − ν)

(
θ − 1 + e−θ

)

3 New Mixture Lorenz Curves
Mixture Lorenz curves are an important way to get a better data fit by constructing more complex models that
combines a parametric Lorenz curve with known distribution function. The mixture method was introduced
by Sarabia (2005)[8].
Let L1(p; θ, ν) be a parametric Lorenz curve, with parameter vectors θ, ν. For example, θ can be a scalar
parameter that represents an factor of the homogeneity of the population.
Let π(θ;α, λ) an absolute continuous probability density function, where α, λ are real parameters.
Theorem 2: The expression L̃1(p; ν;α, λ) =

∫
Θ
L1(p; θ, ν)π(θ;α, λ)dθ defines a Lorenz curve, where

π(θ;α, λ) = λα

Γ(α) (θ − 1)α−1e−λ(θ−1)I(θ > 1), for any α, λ > 0, and θ > 1.
Proof:

L̃1(p; ν;α, λ) =

∫ ∞
1

L1(p; θ, ν)π(θ;α, λ)dθ =

=
λα

ln(p) · Γ(α)

∫ ∞
1

pν − pθ
ν − θ (θ − 1)α−1e−λ(θ−1)dθ

After a few steps and applying the change of variable t = θ − 1 we get:

L̃1(p; ν;α, λ) =
λαp(1− ν)α−2e−λ+1

ln(p)
[pEn(−νλ− νlnp)− En(−λν)] ,

Where En is the exponential integral defined by En = −
∫∞
−x

e−tdt
t .

The necessary conditions for the existence of Lorenz Curve L̃1 will be:

L̃1(0; ν;α, λ) = 0; L̃′1(0+; ν;α, λ) ≥ 0

L̃1(1; ν;α, λ) = 1; L̃′′1(1; ν;α, λ) ≥ 0, p ∈ (0, 1).
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These can be proved as the proof of theorem 1.

Theorem 3: The expression L̃2(p;α, λ, k, ν) =
∫∞

0
L2(p; θ, k, ν)π(θ;α, λ)dθ defines a lorenz Curve, where

π(θ;α, λ) = λα

Γ(α)θ
α−1e−λθI(θ > 0), for any α, λ > 0.

Theorem 4: The expression L̃3(p;α, λ, ν) =
∫∞

0
L3(p; θ, ν)π(θ; ;α, λ)dθ defines a lorenz Curve, where

π(θ;α, λ) = λα

Γ(α)θ
α−1e−λθI(θ > 0), for any α, λ > 0.

Next we want to find the Gini index for the new Lorenz curve L̃3. For this we will use Theorem 3 from
Sarabia (2005)[8] that gives the following property:

G(L̃3) = Eπ[G(L3)],

where Eπis the mathematical expectation of G(L3) as defined in section 2 with respect to the probability
density function π(θ). We get

GL̃3
(λ, ν, α) =

∫ ∞
0

[
1− 2

1− eν−θ
θ2(θ − ν)

(
θ − 1 + e−θ

)] λα

Γ(α)
θα−1e−λθdθ

The final form of the Gini index is given by,

GL̃3
(λ, ν, α) = 1− 2λαe−νλ(−ν)α−3 Γ(α− 2)

Γ(α)
[Γ(3− α,−νλ)− Γ(3− α, ν(1 + λ))]

4 Conclusions
The importance of Lorenz Curves in economic and statistical analysis in the inequality of income and wealth
motivates the desire to find new parametric families of Lorenz curves. Multitude of parametric models
proposed in the literature is not an inconvenience, but an additional reason given by the mismatch of the
empirical curves in totally on the data set of income. We conclude that mixture parametric approach gives
a better fit by introducing tighter constraints. In this paper we defined three mixture Lorenz Curves which
are generated from new initial Lorenz Curve families. In order to analyse the inequality in the income
distribution, for the third proposed curve the Gini indexes are obtained. As a further research, by using
appropriate statistical tools there can be made comparisons between the new mixture curves and classical
ones proposed by Sarabia[8]. The parameter estimates of the models can be obtained by using non-linear
last squares.

Acknowledgements: We would like to thank to our supervisor of this project, professor Vasile Preda for the
valuable guidance and advice.
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Abstract
This paper deals with recovering an unknown vector from noisy data with the help of special family of
linear estimates, namely, a family of ordered smoothers. The estimators withing this family are aggregated
using the exponential weighting method. Our goal is to derive oracle inequalities controlling the risk of the
aggregated estimate. Based on probabilistic properties of the unbiased risk estimate, we show that for the
exponential weighting we can get better remainder terms than that one in Kneip’s oracle inequality [9].
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1 Introduction and main results
In this paper we focus on a simple sequence space model

Yi = µi + σξi, i = 1, 2, . . . , n, (1)

where ξi is a standard white Gaussian noise. For the sake of simplicity it is assumed that the noise level
σ > 0 is known.
The goal is to estimate an unknown vector µ ∈ Rn based on the data Y = (Y1, . . . , Yn)>. In this paper, µ is
recovered with the help of linear estimates

µ̂hi (Y ) = hiYi, h ∈ H, (2)

whereH is a finite set of vectors in Rn which will be described later on.
In what follows, the risk of an estimate µ̂(Y ) = (µ̂1(Y ), . . . , µ̂n(Y ))> is measured by

R(µ̂, µ) = Eµ‖µ̂(Y )− µ‖2,

where Eµ is the expectation with respect to the measure Pµ generated by the observations from (1) and
‖·‖ , 〈·, ·〉 stand for the norm and the inner product in Rn

‖x‖2 =

n∑
i=1

x2
i , 〈x, y〉 =

n∑
i=1

xiyi.

It is seen easily that the mean square risk of µ̂h(Y ) is computed as follows

R(µ̂h, µ) = ‖(1− h)µ‖2 + σ2‖h‖2.
∗Corresponding author, e-mail: ekkrym@gmail.com
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This risk depends on h ∈ H and one can minimize it choosing properly h ∈ H. Often the minimal risk

rH(µ) = min
h∈H

R(µ̂h, µ)

is called the oracle risk.
Obviously, one cannot make use of the oracle estimate

µ∗(Y ) = h∗ · Y, h∗ = arg min
h∈H

R(µ̂h, µ)

because it depends on the underlying vector. However, one could try to construct an estimator µ̃H(Y ) based
on the family of linear estimates µ̂h(Y ), h ∈ H, with the risk mimicking the oracle risk. This idea means
that the risk of µ̃H(Y ) should be bounded by the so-called oracle inequality

R(µ̃H, µ) ≤ rH(µ) + ∆̃H(µ),

which holds uniformly in µ ∈ Rn. In general, such an estimator doesn’t exist, but for certain statistical
models it is possible to construct an estimator µ̃H(Y ) (see, e.g., Theorem 1.1 below) such that:

• ∆̃H(µ) ≤ C̃rH(µ) for all µ ∈ Rn, where C̃ > 1 is a constant.

• ∆̃H(µ)� rH(µ) for all µ : rH(µ)� σ2.

It is well-known that one can find such an estimator provided that H is not very rich (see, e.g., [2]). In
particular this can be done for the so-called ordered smoothers [9]. This is why this paper deals with the set
of ordered multipliersH defined as follows:

• hi ∈ [0, 1], i = 1, . . . , n for all h ∈ H,

• hi+1 ≤ hi, i = 1, . . . , n for all h ∈ H,

• if for some integer k and some h, g ∈ H, hk < gk, then hi ≤ gi for all i = 1, . . . , n.

The last condition means that vectors in H may be naturally ordered, since for any h, g ∈ H there are only
two possibilities hi ≤ gi or hi ≥ gi for all i = 1, . . . , n. Notice that ordered smoothers are common in
statistics (see, e.g., [9]). For example, smoothing splines, spectral regularization methods (see [15], [6]).
Nowadays, there are a lot of approaches aimed to construct an estimate mimicking the oracle risk. At the
best of our knowledge, the principal idea in obtaining such estimates goes back to [1] and [11] and related
to the method of the unbiased risk estimation [14]. The literature on this approach is so vast that it would be
impractical to cite it here. We mention solely the following result by Kneip [9] since it plays an important
role in our presentation. Denote by

r̄(Y, µ̂h)
def
= ‖Y − µ̂h(Y )‖2 + 2σ2

n∑
i=1

hi − σ2n, (3)

the unbiased risk estimate of µ̂h(Y ).

Theorem 1.1. Let
ĥ = arg min

h∈H
r̄(Y, µ̂h).

Then uniformly in µ ∈ Rn,

Eµ‖µ̂ĥ − µ‖2 ≤ rH(µ) +Kσ2

√
1 +

rH(µ)

σ2
, (4)

where K is a universal constant.
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Another way to construct a good estimator based on the family µ̂h, h ∈ H is to aggregate the estimates
within this family using a held-out sample (see [12],[3]).
To overcome the well-know drawbacks of sample splitting one would like to construct estimators using the
same observations and performing the aggregation. This can be done, for instance, with the help of the
exponential weighting. The motivation of this method is related to the problem of functional aggregation,
see [13]. It has been shown that this method yields rather good oracle inequalities for certain statistical
models [10], [5], [13].
The exponential weighting estimate is defined as follows:

µ̄(Y ) =
∑
h∈H

wh(Y )µ̂h(Y ), (5)

where

wh(Y ) = πh exp

[
− r̄(Y, µ̂

h)

2βσ2

]/∑
g∈H

πg exp

[
− r̄(Y, µ̂

g)

2βσ2

]
, β > 0,

and r̄(Y, µ̂h) is the unbiased risk estimate of µ̂h(Y ) defined by (3).
The main goal of this paper is to show that for the exponential weighting we can get oracle inequalities with
smaller remainder terms than that one in Theorem 1.1, Equation (4).
In order to cover H with low and very hight cardinalities, we make use of the special prior weights defined
as follows:

πh
def
= 1− exp

{
−‖h

+‖1 − ‖h‖1
β

}
.

Here
h+ = min{g ∈ H : g > h}

πhmax = 1, where hmax is the maximal multiplier inH, and ‖ · ‖1 stands for the l1-norm in Rn, i.e.,

‖h‖1 =

n∑
i=1

|hi|.

Along with these weights we will need also the following condition:

Condition 1. There exists a constant K◦ ∈ (0,∞) such that

‖h‖2 − ‖g‖2 ≥ K◦
(
‖h‖1 − ‖g‖1

)
(6)

for all h ≥ g fromH.

The next theorem, yielding an upper bound for the mean square risk of µ̄(Y ) defined by (3.1), is the main
result of this paper.

Theorem 1.2. Assume thatH is a set of ordered multipliers, β ≥ 4, and Conditions 1 holds. Then, uniformly
in µ ∈ Rn,

Eµ‖µ̄− µ‖2 ≤ rH(µ) + 2βσ2 log

[
C

(
1 +

rH(µ)

σ2

)]
. (7)

Here and in what follows C = C(K◦, β) denotes strictly positive and bounded constants depending on
K◦, β.

We begin a short discussion concerning this theorem. We finish this section with some remarks regarding
this theorem.
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Remark 1. The condition β ≥ 4 may be improved when the ordered multipliers h ∈ H take only two values
0 and 1. In this case it is sufficient to assume that β ≥ 2 (see [8]).

Remark 2. Usually Condition 1 may be checked rather easily. For instance, for smoothing splines and
equidistant design, the set of ordered multipliers is given by

H =

{
h : hk =

1

1 + αλk
, α ∈ R+

}
.

with λk � (πk)2m for large k (see [4] for details). Heuristically, for small α and large n we have

‖hα‖2 ≈ π−1α−1/(2m)

∫ ∞
0

1

[1 + x2m]2
dx

and

‖hα‖1 ≈ π−1α−1/(2m)

∫ ∞
0

1

1 + x2m
dx.

With these equations Condition 1 becomes obvious. A rigorous proof of (6) is based on a non-asymptotic
version of these arguments. It is technical but unfortunately cumbersome and therefore, in order not to
overload the paper, we omit it.

Remark 3. In contrast to Proposition 2 in [5], the remainder term in (7) does not depend neither on the
cardinality ofH nor n. It has the same structure as Kneip’s oracle inequality in Theorem 1.1.

Remark 4. Comparing (7) with (4), we see that when rH(µ)/σ2 ≈ 1, then the remainder terms in (4) and
(7) have the same order, namely, σ2. However, when rH(µ)/σ2 � 1, we get

2βσ2 log

[
C

(
1 +

rH(µ)

σ2

)]
� Kσ2

√
1 +

rH(µ)

σ2
,

thus showing that the upper bound for the remainder term in the oracle inequality related to the exponential
weighting is better than the one in Theorem 1.1.
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eling and Optimization, Moscow Institute Physics and Technology, Russian Federation government grant,
ag. 11.G34.31.0073.

Bibliography

[1] AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle Proc.
2nd Intern. Symp. Inf. Theory. 267–281.
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Abstract
We propose a stochastic optimization method for constructing efficient designs of experiments under a broad
class of linear constraints on the design weights. The linear constraints can represent restrictions on various
types of “limits” associated with the experiment. To illustrate the method, we computed D- and A-optimal
designs for estimating a set of treatment contrasts in the case of block size-two experiments with upper limits
on the number of replications of each non-control treatment.
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1 Introduction
Consider an experiment consisting of b trials with real-valued observations Y1, ..., Yb satisfying the linear
regression model

Yi = f ′(xi)τ + εi, i = 1, . . . , b. (1)

In this model, f(x1), ..., f(xb) ∈ Rv are known regression vectors, τ ∈ Rv is a vector of unknown parame-
ters, and ε1, ..., εb are independent identically distributed random errors with variance σ2 <∞. The design
points x1, ..., xb are selected from a finite design space X.
Let the function ξ : X → {0, 1, 2 . . . } be an exact experimental design, that is, ξ(x) is the number of trials
to be performed in the design point x ∈ X. The moment matrix for the design ξ is given by

M(ξ) =

b∑
i=1

ξ(xi)f(xi)f
′(xi).

The v × v positive semidefinite matrix M(ξ) captures the amount of the information about the vector τ of
all unknown parameters. Therefore, the aim of optimal design of experiment is to select the design ξ such
that some aspect of the “size” of M(ξ) is maximized, depending on the aim of the experiment.
In many applications, the aim is to estimate a linear parameter system A′τ , where A is a v × s matrix of a
full rank s ≤ v. It is well known that an unbiased linear estimator of A′τ exists if and only if

M(A) ⊆M(M(ξ)), (2)

whereM denotes the linear space generated by the columns of a matrix. We will call (2) estimability condi-
tions. If the estimability conditions are satisfied, then the information about the linear parameter subsystem
A′τ gained from the experiment can be represented by the information matrix

(A′M−(ξ)A)−1, (3)
∗Corresponding author, e-mail: Alena.Bachrata@fmph.uniba.sk
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which is thoroughly justified in [8]. Note that if the estimability conditions are satisfied, then the information
matrix (3) does not depend on the choice of the generalized inverse M−(ξ).
To select the best experimental design ξ, we can use the following real-valued measures of the information
matrix, known as the criteria of DA-optimality, and AA-optimality, respectively (see [8], cf. [1]):

ΦD(M(ξ)) =

{
det−1/s(A′M−(ξ)A) ifM(A) ⊆M(M(ξ)),

0 else,

ΦA(M(ξ)) =

{(
1
s trace(A′M−(ξ)A)

)−1
ifM(A) ⊆M(M(ξ)),

0 else.

The design ξ∗ is called Φ-optimal (that is DA-optimal or AA-optimal, depending on the chosen criterion),
if

ξ∗ ∈ argmaxξ∈ΞΦ(M(ξ)),

where Ξ is the set of all designs satisfying required constraints. Note that if the errors are normally dis-
tributed, then the DA-optimal design minimizes the volume of the s-dimensional confidence ellipsoid for
the linear parameter system A′τ , and the AA-optimal design minimizes the sum of variances of the s com-
ponents of A′τ , see, e.g., [7].
In this paper, we will consider the class of linear constraints of the form∑

x∈X
cj(x)ξ(x) ≤ γj ; j = 1, . . . ,K. (4)

We will assume that for any design point x ∈ X we have cj(x) ≥ 0 for all j ∈ {1, ...,K}, and cj(x) > 0
for at least one j ∈ {1, ...,K}. We will also assume that γj > 0 for all j ∈ {1, ...,K}. Note that the
assumptions imply that the set Ξ of designs satisfying restrictions (4) is non-empty and bounded.
The constraints (4) can be used, for instance, to set an upper limit on the total number of all trials, upper limits
on the numbers of trials in individual design points, or an upper limit on the total cost of the experiment,
provided that each trial is associated with a cost depending on the design point.

2 The stochastic optimization method
In general, computing a Φ-optimal design of experiments is a difficult problem of discrete optimization,
see, e.g., [5] for a brief recent review of possible computational approaches. For the purpose of computing
Φ-optimal designs under the constraints (4), we propose the following stochastic optimization method.
The computation begins with a permissible design ζ ∈ Ξ. In the first phase, which we call saturation, the
method adds trials to ζ by the greedy method, until it achieves a design ξ that is “saturated”, i.e., addition of
any trial to ξ would entail violation of some of the constraints (4). In the second phase, which we call sub-
saturation, the method removes a random number of trials from the design ξ to obtain a new “sub-saturated”
design ζ. The phases of saturation and sub-saturation are alternately repeated N times. At the end, the
saturated design with the best value of the optimality criterion Φ is chosen to be the output of the method.
The principle is illustrated in Figure 1.

3 Optimal block size-two designs for estimating a set of treatment
contrasts

Consider the block experiment with b blocks of size two and treatments labeled 1, 2, ..., v. Let the observa-
tions Y1, ..., Yb correspond to the differences of the two responses within the same blocks. More formally,
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Initial design - ζ1

“Saturated” design - , 2ξ  ξ1

“Subsaturated” design - ζ2

Saturation

Subsaturation

Constraint

ζ1

ξ1

ζ2

ξ2

Figure 1: Illustration of the stochastic optimization algorithm for constructing constrained optimal designs.

we will assume that the design space is

X = {(t1, t2) : 1 ≤ t1 < t2 ≤ v},

and for each (t1, t2) ∈ X the regressor f(t1, t2) ∈ Rv is defined by ft1(t1, t2) = 1, ft2(t1, t2) = −1 and
ft(t1, t2) = 0 for all t ∈ {1, ..., v} \ {t1, t2}. Then it is straightforward to show that the moment matrix of a
design ξ is

M(ξ) =


r1 −a12 −a13 ... −a1v

−a12 r2 −a23 ... −a2v

−a13 −a23 r3 ... −a3v

... ... ... ... ...
−a1v −a2v −a3v ... rv

 . (5)

In the previous expression at1t2 = ξ(t1, t2) for all 1 ≤ t1 < t2 ≤ v, and

rt =
∑

(t1,t2)∈Xt
ξ(t1, t2), t = 1, ..., v,

where Xt denotes the set of all design points (t1, t2) such that either t1 = t or t2 = t. Therefore, the
moment matrix (5) is equal to the information matrix of a block design with b blocks of size two, r1, ..., rv
replications of each treatment and at1t2 occurrences of the treatments t1 and t2 in the same block (see, e.g.,
[2] and [3]).

In addition to the standard constraint
∑

(t1,t2)∈X ξ(t1, t2) = b on the size of the experiment, we will assume
that

∑
(t1,t2)∈Xt ξ(t1, t2) ≤ r for some given r ∈ N and for all t ∈ {2, ..., v}. That is, we assume that 1 is a

“control” treatment, and each of the “non-control” treatments 2, ..., v can be replicated at most r times. Note
that these constraints can be written in the form (4). Our aim will be to find the design that is optimal for
estimating the set of s = v−1 contrasts τ1−τ2, . . . , τ1−τv . Formally, we will choose A = (1v−1,−Iv−1)′,
where 1v−1 = (1, ..., 1)′ ∈ Rv−1 and Iv−1 is the identity matrix of type (v − 1)× (v − 1).

Every block design can be represented by a ”concurrence” graph with vertices corresponding to treatments
and edges corresponding to the blocks. That is, if ξ is a design, then the set of the vertices of its concurrence
graph is {1, ..., v} and each couple t1, t2 of vertices is connected by at1t2 = ξ(t1, t2) edges (cf. [4], [6], [2]
and [3]). It can be shown that the problem of DA-optimality for the block size-two model is equivalent to
the problem of constructing a graph with v vertices and b possibly multiple undirected edges, maximizing
the number of its spanning trees (see [4] and [6]). Similarly, for our choice of the matrix A, the problem of
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AA-optimality is equivalent to the problem of constructing the graph with v vertices and b possibly multiple
undirected edges, minimizing average electrical resistance between node 1 and all other nodes, if we assume
that each edge has the electrical resistance of 1 ohm (cf. [2] and [3]).

Figure 2 shows the concurrence graphs of the resultingDA-optimal andAA-optimal designs of experiments
for v = 6 treatments, b = 5, . . . , 10 blocks and the upper limit r = 2 on the number of replications of each
non-control treatment. The designs were computed by the method explained in Section 2 with N = 500
iterations. The values of the criteria of DA-optimality and AA-optimality for all involved optimal designs
are given in Table 1.

b=5 b=6 b=7

b=8 b=9 b=10

Figure 2: The concurrence graphs of the DA-optimal and the AA-optimal designs for the models with
v = 6 treatments and b = 5, ..., 10 blocks of size two. The empty circles denotes the control treatments
and the solid discs denote the non-control treatments. The edges represent the pairing of the treatments into
blocks. The upper limit on the number of replications of each non-control treatment is r = 2. Note the
for b = 5, 8, 9, 10 the DA-optimal and the AA-optimal designs coincide. For b = 6, 7 the edges of the
concurrence graphs of the DA-optimal designs are denoted by the solid and dashed lines, and the edges of
the concurrence graphs of the AA-optimal designs are denoted by the solid and dotted lines. Note that for
b = 6, 7 the AA-optimal designs perform more replications of the control treatment than the DA-optimal
designs.
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5 6D 6A 7D 7A 8 9 10
ΦD 1.0000 1.4311 1.2457 1.6438 1.5518 1.7826 1.8882 2.0000
ΦA 1.0000 0.8572 1.1538 1.3044 1.3636 1.5789 1.7647 2.0000

Table 1: The values of the criterion of DA-optimality (denoted by ΦD) and the values of the criterion of
AA-optimality (denoted by ΦA) for optimal designs illustrated in Figure 2, see the text for details. The
labels 5, 8, 9 and 10 denote the designs for b = 5, 8, 9, 10 that are optimal for both criteria. The labels 6D
and 7D denote the DA-optimal designs for b = 6 and b = 7, respectively. Similarly, 6A and 7A denote the
AA-optimal designs for b = 6 and b = 7, respectively.
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Stochastic interest rates in life insurance mathematics
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Abstract
Basic life insurance mathematics applies some simplifications, e.g., the assumption of constant interest rates
during the period of insurance. Insurance companies in Slovakia usually follow these assumptions and
they calculate the premium using the technical interest rate. According to Decree of the National Bank of
Slovakia the maximum technical rate of interest shall be 2.5% p. a. From a practical point of view, insurance
corporations invest collected premiums on behalf of policyholders in different types of assets (e.g., bonds,
shares, deposits). However, their yields have stochastic character, because the situation in the financial and
capital markets is continually changing. For insurance companies it is important to know what kind of risks
and losses they will face, if premium is computed using technical interest rate, while return on investments
is not guaranteed. The aim of this paper is to present an alternative method for pricing the present value
of potential future insurance losses. We assume that the potential losses are derived from the stochastic
behavior of interest rates and market yields.

Keywords: technical rate of interest, actuarial present value, ARIMA time series
AMS subject classifications: 91B30, 91G30

1 Introduction
Life insurance business is an important part of the insurance sector and the national economy. The primary
function of life insurance is to provide protection, certainty as well as additional savings accumulation. We
can say that a life insurance company is, strictly speaking, a ”set” of assets and liabilities. On the one side,
premium paid by policyholders is subsequently allocated to various assets (e. g., bonds, shares, options,
etc.) and, on the other side, the insurance companies have an obligation to provide insurance benefits upon
occurrence of an insurance event.
The main aim of the actuarial mathematics is to develop appropriate models which can be applied to cal-
ibration of insurance products. For life insurance corporations one of the most important challenges is to
correctly and accurately appreciate future liabilities (obligations). In this paper, we deal primarily with the
examination of models by which the life insurance company is able to estimate the present value of their
future expenses. We focus on the modeling of market interest rates, and thereby on estimation of potential
future value of investments of a life insurance company.
The scheme of the paper is as follows: Section 2 describes the basic model of life insurance and methods of
calculating the net single premium in case of different insurance types. Section 3 contains some important
terms and definitions from the theory of stochastic processes, which are used to model stochastic interest
rates. In Section 4, two different approaches of calculating the actuarial present value are compared.

∗e-mail: szucs@fmph.uniba.sk
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2 Basic model of life insurance
The basic model of life insurance applies some special notations and assumptions (see [1] or [5]), we will
introduce only the most relevant ones. Let us consider a person of age x (a person aged x years, also called
a life aged x). The probability that this person dies within the next year is denoted by the symbol qx. The
probability of complementary event, i. e., that the person of age x will survive to age (x + 1), is defined
by the formula px = 1 − qx. In actuarial life tables, there are generally given these one-year probabilities
of death qx, ∀x ∈ {0, 1, 2, . . . }. More generally, kpx denotes the probability that the person of age x will
survive at least k years and is defined by

kpx = px px+1 . . . px+k−1 =

k−1∏
h=0

px+h, k = 1, 2, 3, . . .

Similarly, kqx is the probability that person dies within the coming k years. It can be expressed in the form

kqx = 0px qx + 1px qx+1 . . . k−1px qx+k−1 =
k−1∑
h=0

hpx qx+h, for k = 1, 2, 3, . . . ,

where 0px ≡ 1 and 1px , px.

2.1 Elementary insurance types
Life insurance is a contract between an insurance policy holder (insured) and an insurer, where the insured
pays a premium and the insurer promises to pay a designated sum of money, the sum insured. The time and
amount of sum insured may be random variables because of the stochastic character of the insured’s future
lifetime. One of the most important tasks of actuarial mathematics is to calculate the expected present value
(EPV) of this payment. According to the principle of equivalence, the expected present value of the sum
insured is equal to the net single premium. The EPV is in basic model calculated by discounting future cash
payments by the technical interest rate, which is usually an effective annual rate of interest. Let us denote
by ι the technical interest rate and by ν = (1 + ι)−1 the discount factor. The force of interest, denoted by δ,
characterizes continuous compounding. The formula to convert between ι and δ is δ = log(1 + ι).
More generally, for all t ∈ Υ we get following analogues

(1 + ι)t = eδt, νt = e−δt, (1)

where Υ is a given set.
A pure endowment of duration n years provides for payment of 1 unit at the end of the n-th year only if the
insured survives until the age (x+ n). The net single premium is given by

A 1
x:n = νn npx = e−δn npx. (2)

An n-year term insurance pays 1 unit at the end of the year of policyholder’s death if he or she dies within
the n-year period. The formula for the net single premium is

A1
x:n =

n−1∑
k=0

νk+1
kpx qx+k =

n−1∑
k=0

e−δ(k+1)
kpx qx+k. (3)

An endowment of duration n years pays 1 unit either at end of the year of death of the insured or at the end
of the n-th year if the insured survives until that time. The net single premium is denoted by Ax:n and given
by

Ax:n = ν qx + ν2 px qx+1 + · · ·+ νn n−1px qx+n−1 + νn npx,

Ax:n = A1
x:n +A 1

x:n . (4)
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3 Stochastic processes and time series
In this section we will introduce a stochastic model of force of interest applicable to pricing insurance
products and to estimate present value of future payments. Let us consider the force of interest δ(t) which
changes in time and has stochastic character. This function δ(t) and the stochastic actuarial present value
have been studied in several papers (e. g., [4]). We was dealing with a methodology based on ARIMA time
series which can be used to model the stochastic interest rates.
Definition 1. (see [2]) Let us denote by Z the set of all integers. A discrete-time stochastic process (time
series) Y = {Y (t), t ∈ Z} is called white noise if Y is a sequence of uncorrelated random variables with
mean 0 and variance σ2, where σ > 0.
The autoregressive moving average time series of orders p and q is denoted by ARMA(p, q) and defined by

X(t) =

p∑
k=1

αk X(t− k) +

q∑
m=0

βm Y (t−m) for t ∈ Z,

where p > 0, q ≥ 0, α1, . . . , αp, β1, . . . , βq are real parameters and β0 = 1.
Definition 2. Consider a time series X = {X(t), t ∈ Z}. The first order difference process is denoted by
∇X(t) and defined by

∇X(t) = X(t)−X(t− 1) for t ∈ Z.

Analogously, the difference process of order d can be defined as

∇dX(t) = ∇(∇(. . . (∇︸ ︷︷ ︸
d−times

X)))(t) for t ∈ Z.

Definition 3.
A discrete-time process X = {X(t), t ∈ Z} is called the autoregressive integrated moving average time
series, denoted by ARIMA(p, d, q), if∇dX(t) is an ARMA(p, q) time series.

4 Practical application
As we mentioned in Section 2, pricing of life insurance products is generally made on the basis of technical
interest rate ι. In this part we compare actuarial present value of a term insurance calculated by using
the basic model and expected present value of future expenses computed with regard to the assumption of
stochastic character of investment interest rates. Interest rates in the second approach are assumed to follow
an ARIMA time series.
Suppose that a person aged 60 has purchased a three-year term insurance for 5, 000 units. The benefit is
payable at the end of the year of policyholder’s death. The insurance company invests collected premium in
assets with maturity of one year. If the person does not die, the insurer reinvests the accumulated premium
back into the one-year assets. Probabilities of death are (see [7]): q60 = 0.012353; q61 = 0.013612,
q62 = 0.014531. Firstly, we calculate the net single premium for this policy and then we estimate the
present value of future payment under the assumption of stochastic development of interest rates.
Calculation of insurance premium
Technical rate of interest ι = 0.025 p. a. converted to force of interest is δι = log(1 + ι) = 0.02469261 p. a.
By applying probabilities of death and formula (3) we should obtain the net single premiumA 1

60:3
= 189.97

units.

Simulation study
Let us consider that force of interest is assumed to obey an ARIMA time series. Euribor 12M interest rates
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from January 3, 2011 to April 26, 2013 (see [3]) served as reference data for the calibration of parameters
of ARIMA model. To calibrate the coefficients of ARIMA model we applied the package forecast
and the procedure auto.arima() in R. Using the Akaike Information Criterion (AIC) the output of
procedure was as follows:

# Series: euribor
# ARIMA(2,2,2)
#
# Coefficients:
# ar1 ar2 ma1 ma2
# 0.4190 0.0883 -1.4043 0.4253
# s.e. 0.3105 0.0427 0.3102 0.2963
#
# sigmaˆ2 estimated as 1.153e-08: log likelihood=4576.9
# AIC=-9143.81 AICc=-9143.7 BIC=-9121.88
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Fig. 1: Evolution of Euribor 12M and ARIMA(2, 2, 2) fit

To calculate the present value of future payments related to the 3-year term insurance, we performed a
simulation study which was carried out using the statistical software R [6]. We chose the following param-
eters: number of simulations N = 5000, starting value of the interest rate δ0 = log(1 + 0.00515) p. a.
(r0 = 0.00515 is the EURIBOR 12M interest rate from Apr. 26, 2013), length of the working year y = 257
days. We realized daily simulations for the full three year horizon, but technically were used only interest
rates on the beginning of each year. Let us denote Ã1

60:3
the present value of future payments related to the

abovementioned three-year term insurance. The mean of simulations was E
[
Ã1

60:3

]
= 198.10 units, while

the simulated 95% confidence interval (CI) for Ã1
60:3

was (182.68, 215.51).
To make it fair and comparable with classical approach, we changed the starting value of simulations to
δ0 = log(1+ ι) = log(1+0.025) p. a. and carried out an additional simulation. The result was E

[
Ã1

60:3

]
=

190.40 units with 95% CI (176.23, 205.85).
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5 Conclusions
The stochastic approach in previous example has shown that the basic net single premium wouldn’t be
enough to cover the expenses related to the chosen life insurance product. The different results are due
to the more pessimistic prognosis for interest rates in ARIMA-model (in case of first simulation). From
properties of ARIMA-process it follows that the simulated interest may take negative values. Another
disadvantage of the stochastic approach is that the final result is a little inaccurate (confidence interval for
the present value of future payments is too wide). Finally, it was shown that between two methods are only
small differences, if the initial value of simulation was equal to the technical interest rate. Nevertheless, the
stochastic approach may be useful for insurance companies, for example in finding an appropriate hedging
strategy or in calculating the solvency capital requirement.
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Comenius University No. UK/160/2013.
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Statistical methodology in the scope of performance budgeting
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Abstract
The environmental protection has become one of the main political priorities of the United Nations and the
European Union. The environment is one of the areas where measurement of performance and efficiency is
particularly difficult specially owing to lack of information and absence of traceability of actual effects on
the environment. For this reason, environment requires its own approach that will properly evaluate environ-
mental data and use them when planning the budget. Performance budgeting promises such solution as this
approach investigates the linkage between spent public resources and planned public policy objectives. Re-
alization of these objectives is measured through a set of indicators, attributed to each objective. The purpose
of the paper is to present a brief theoretical and methodological framework of performance budgeting in the
field of environmental policy and set a proper model for studying the linkage between environmental taxes,
environmental expenditures and environmental impacts that are all interrelated. These will be estimated by
a specifically tailored statistical model and tested in the case of the EU Member States.

Keywords: Performance budgeting, statistical methodology, the European Union, environment.
AMS subject classifications: 62M10.

1 Introduction
The current global financial and economic crisis is revealing the importance of the question of the effective-
ness and efficiency of the public sector. Measuring performance in general applies to systematic efforts to
assess government activity and enhance accountability for progress and outcomes in achieving results [6].
Especially among the OECD countries there is a trend for greater orientation toward effects in public sector
management [3] as a consequence of international organizations’ recommendations [15].
Environmental protection and pollution is becoming increasingly important issue of every society. The oc-
currence of negative environmental externalities that affect the society as a whole, reflect the growing public
concern and need for effective control of environmental pollution [4, 10]. The article discusses an issue of
effectiveness and efficiency of the public sector, namely the concept of performance budgeting in an envi-
ronmental perspective. This concept helps us to ascertain the connection between allocated public funds and
goals of specific policies we want to achieve by these means. Attainment of these goals is measured through
a set of indicators attributed to individual goals. The purpose of the article is to present a brief theoreti-
cal and methodological framework of performance budgeting in the field of environmental policy and set a
proper model for studying the linkage between interrelated groups, i.e. environmental taxes, environmental
expenditures and environmental impacts.

∗Corresponding author, e-mail: ziga.kotnik@fu.uni-lj.si
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2 A brief literature review
Authors [18, 8, 16, 14, 9] agree there is no one single definition of performance budgeting. However,
the review of the literature suggests what it means commonly. Experts on public budgeting agree that
performance budgeting presents a promising tool for improving governance and accountability of public
finance expenditures. Performance budgeting denotes the allocation of funds to achieve programmatic goals
and objectives as well as some indications or measurements of work, efficiency, and/or effectiveness. In
other words, the budget concept links the findings of performance measurement to budget allocations and
investigates connection between spent public resources and planned public policy objectives [18, 14, 9].
Although no standard definition of performance budgeting exists Carter [5] states that it is a way to allocate
resources to achieve specific objectives based on program goals and measured results. It differs from tradi-
tional approaches because it focuses on spending results rather than the money spent—on what the money
buys rather than the amount that is made available.
Joyce [8] defined two utilitarian aims that performance budgeting wishes to fulfil, i.e. to improve decision-
making and ameliorate service delivery. In fact, public budgeting is about making choices. To make better
choices, decision-makers need qualitative and complete information and data. Performance budgeting is
able to provide these through its various components or devices; e.g., the setting of goals and objectives,
the prioritizing of these ends, and the measuring of performance levels (via the indices of efficiency and
effectiveness) [18].
When defining suitable theoretical and methodological framework for researching connections between in-
terconnected groups, i.e. environmental taxes, expenditures and impacts, it is important to include all three
groups into the model. Performance budgeting model is accomplished only when all groups are taken under
consideration.

3 Methodology framework for assessing efficiency and effectiveness
of environmental policy

The usual reason for the failure of theoretical framework’s concretization to measure the effectiveness and
efficiency in the public sector is a lack of focus on defining goals needed to be achieved by public ad-
ministration and indicators that measure achieved goals. The environment is such a case since measuring
effectiveness and efficiency and allocation of resources can be very difficult because of lack of quality in-
formation, different goals between countries and difficult traceability of actual impact on the environment
[16]. Therefore, when establishing performance budgeting the most important thing is good definition of the
most important indicators and their target values, since in most cases indicators can be used as a basis for
international comparison of comprehensive long-term social trends [1, 13].
In order to properly verify linkage between taxes, expenditures and impacts adequate simultaneous equa-
tions models (SEMs) [7, 17] will be used to evaluate effects of environmental taxes collected, environmental
expenditures spent to achieve the environmental impacts, and effects of environmental impacts on environ-
mental taxes collected after a certain period of time. According to Gujarati [7] SEMs are models where
the interaction between all variables is taken into account that means multiple regression equations are esti-
mated, one for each interdependent variable (taxes, expenditures, impacts).
Available environmental data for the European Union are combined in panels of time series from different
cross-sectional units, i.e. using environmental indicators for taxes, expenditures and impacts. We will
construct appropriate composite variables (composite indicators), apply different multivariate methods, e.g.
factor analysis of each group of indicators taxes, expenditures and impacts, determine the time lags between
three groups based on strong theory foundation and computation of correlations between the time series with
lags. The OLS estimators and sensitivity tests will be used to evaluate regression functions.
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We elaborate a performance budgeting model (Figure 1) and try to determine whether environmental expen-
ditures and environmental impacts may be explained with environmental taxes. Finally, the validity of the
proposed model on the basis of properly selected data will be verified.

Figure 1: Performance budgeting model

The performance budgeting model is accomplished by connecting environmental taxes, environmental ex-
penditures and environmental impact, and setting up a feedback loop between these three groups. In ad-
dition, we need to take into account the influence of environmental impact on environmental taxes after a
certain period of time. Higher expenditures in one period influent environmental impacts which may affect
the reduction of environmental taxes in the later period. Polluters begin to behave in an environmentally
friendly manner that reduces the tax base. This presents a feedback loop in the model that should provide an
additional test of the theoretical framework. Moreover, we will consider individual effects of time lags and
proper steps in dealing with econometric environmental models.
Environmental model will be tested for three different environmental domains, namely:

• protection of ambient air and climate

• wastewater management

• waste management.

Furthermore, we present a set of environmental indicators, among others: environmental taxes and expen-
ditures (Table 1), included in the proposed model that will evaluate influence of spent environmental taxes
on achieving environmental impacts and the connection between the taxes, expenditures and impacts in the
field of environment in general. Disposable environmental data for the European Union are available for
all above-mentioned components, i.e. environmental taxes, environmental expenditures and environmental
impacts. Data for selected indicators are attainable from international statistical database, i.e. the World
Bank, the OECD, the UN, the European Commission (European Directorate for Taxation and Customs) and
the Eurostat.
Apart from above-mentioned three groups a set of the control variables, e.g. growth rate of GDP, total
investment over lagged GDP, lagged share of expenditures on public goods (as % of total government exp),
proposed by several authors [11, 12, 2] will be used to inspect above-mentioned connections in our model.



18TH EUROPEAN YOUNG STATISTICIANS MEETING 162

Total environmental taxes Environmental protection expenditure
(main subgroups) (main subgroups)

Energy taxes Total investments
Pollution taxes Pollution treatment investments
Resource taxes Pollution prevention investments
Transport taxes Total current expenditure

In-house current expenditure
Fees and purchases

Receipts from by-products
Subsidies/transfers

Revenues from sales of environmental services

Table 1: Environmental taxes and expenditures

4 Discussion
The short paper proposes a statistical performance budgeting model to be used in the field of the environ-
ment. Presented model contains all three key groups, i.e. environmental taxes, environmental expenditures
and environmental impacts. Performance budgeting in the environmental perspective is realized only after
all three groups are taken into consideration. In this way the model presents an upgrade to existing method-
ologies. Further, it includes a feedback loop between all above-mentioned groups by taking into account
the effect of the environmental impact on collected environmental taxes after a certain period of time. By
including such a relatively large number of environmental indicators in the model, this will substantiate the
connection between environmental taxes, environmental expenditures and impacts on the environment.
The methodology devoloped here could be used in other similar research fields, e.g. macroeconomics and
administration, and will help to develop other scientific fileds as well. The intertwine of statistics and social
sciences will contribute to new knowledge and interdisciplinary developments in the field of public finance.
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[12] López, R. and Islam, A. (2008). When Government Spendings Serves the Elites: Consequences of
Economic Growth in a Context of Market Imperfections. Working Paper 08–13 University of Maryland,
College Park, Maryland.

[13] National Performance Review. (1993). Mission Driven, Results Oriented Budgeting, Office of the Vice
President, Washington, DC.

[14] van Nispen, F.K.M. and Posseth, J.A. (2006). Performance Budgeting in the Netherlands: Beyond
Arithmetic. OECD Journal on Budgeting 6(4), 37-–62.

[15] OECD (2008). Performance Budgeting: A user’s guide, OECD Publishing, Paris.
[16] Perrin, B. (2002). Implementing the Vision: Addressing Challenges to Results-Focused Management

and Budgeting, OECD, Paris.
[17] Wooldridge, J.M. (2003). Introductory Econometrics. A Modern Approach, South-Western College

Pub., Cincinnati, Ohio.
[18] Young, R.D. (2003). Performance-Based Budget Systems, USC Instutite for Public Services and Policy

Research, Columbia, South Carolina.





18TH EUROPEAN YOUNG STATISTICIANS MEETING 165

Upper and lower bounds for ordered random variables

Nuria Torrado∗

Department of Statistical Methods, University of Zaragoza

Abstract
Our aim was to examine upper and lower bounds for some reliability functions for independent but not
identically distributed random variables. This problem was studied by different authors when the random
variables are independent and identically distributed (see [3, 4, 7], among others).
In the article and in the presentation a short overview on the wide field of stochastic orderings is given,
showing some results given by Torrado and Lillo [8] and also some of the current research the author is
doing in moment. Some applications to multiple-outlier models will be briefly discussed. Multiple-outliers
models are interesting due to applications in the study of the robustness of different estimators of parameters
of a wide range of distributions, see e.g. Balakrishnan [1].

Keywords: Reliability Theory, Multiple-outlier Models, Ordered random variables, Stochastic Orderings.
AMS subject classifications: 60E15, 60K10, 62G30.

1 Introduction
Models of ordered random variables are widely used in statistical modelling and inference. In this section
we review some models of ordered random variables, such as order statistics and spacings.
If the random variables X1, . . . , Xn are arranged in ascending order of magnitude, then the i ’th smallest of
Xi’s is denoted by Xi:n. The ordered quantities

X1:n ≤ X2:n ≤ · · · ≤ Xn:n , (1)

are called order statistics (OS), and Xi:n is the i’th order statistic. These random variables are of great
interest in many areas of statistics, specifically, there is a very interesting application of OS’s in reliability
theory. The (n− k + 1)’th OS in a sample of size n represents the life length of a k-out-of-n system which
is an important technical structure. It consists of n components of the same kind with independent and
identically distributed life lengths. All n components start working simultaneously, and the system works,
if at least k components function; i.e. the system fails, if (n− k + 1) or more components fail.
Another interesting random variables, which correspond to times elapsed between successive failures in the
reliability context, are simple spacings. The i ’th simple spacing is defined as

Di:n = Xi:n −Xi−1:n.

A lot of work has been done in the literature on stochastic comparisons of order statistics and spacings, see
[5] for a recent review.
In the conventional modelling of these structures, the component lifetimes are supposed to be independent
and identically distributed random variables. However, in many practical situations, like in reliability theory,
the observations are not necessarily iid. For example, in software reliability, failure times of a software
∗e-mail: nuria.torrado@gmail.com
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program are modeled as order statistics of independent nonidentically distributed (i.ni.d) exponential random
variables. According to Miller [6], these models are called EOS. It is well known that OS from heterogeneous
exponential random variables are ordered with respect to various magnitude orderings, such as the hazard
rate ordering. Thus, a natural question to ask is whether the spacings from exponential random variables
with different scale parameters are also ordered according to some stochastic orderings, for instance with
respect the hazard rate ordering. In Figure 1, we show two examples on this, when λi = a bi, a > 0,
0 < b < 1 and when λi = a i−b, a > 0, 1 < b < ∞, which are case 3 (geometric rates) and case 4 (power
rates) in Miller [6], respectively.

0 1 2 3 4 5

0.2

0.4

0.6

0.8

h1:3HtL

h2:3HtL

h3:3HtL

(a) λi = a bi, a = 3, b = 0.4

0 5 10 15 20

0.5

1.0

1.5

2.0
h1:3HtL

h2:3HtL
h3:3HtL

(b) λi = a i−b, a = 3, b = 1.1

Figure 1: Hazard rate function of spacings for two EOS software reliability models

Specifically, Figure 1(a) and Figure 1(b) present the hazard rate function, hi:3(t), of normalized spacings
from three heterogeneous exponential random variables having hazard rate λi = a bi, a = 3, b = 0.4 and
λi = a i−b, a = 3, b = 1.1, respectively. As seen from these figures, the normalized spacings are ordered
according to the hazard rate ordering in both cases.
The objective of this work is first to discuss some recent results on stochastic comparisons between simple
spacings of heterogeneous samples and present some extensions. Specifically, we study stochastic orderings
among spacings in the two sample problem, and also, show some applications to multiple-outlier models.
The article is organized as follows. In Section 2, we introduce some useful definitions which will be used
in the following sections. We investigate, in Section 3.1, the likelihood ratio ordering of spacings of a
sample from heterogeneous exponential random variables. Finally, we briefly discuss some applications to
multiple-outlier models in Section 4.

2 Definitions of magnitude orders
In this section, we give briefly a review of stochastic orders related to the magnitude of random variables.
Throughout, we shall use increasing to mean non-decreasing and decreasing to mean non-increasing.

Definition 2.1. Let X and Y be univariate random variables with cumulative distribution functions (cdf’s)
F and G, respectively. We say that X is smaller than Y in the usual stochastic order if F (t) ≤ G(t), for all
t and in this case, we write X ≤st Y .

Recall that the hazard rate function is a measure of the tendency to fail and it is also known as the instanta-
neous failure rate. The hazard rate function, hX , of a random variable X at t is defined on the support of
the distribution by

hX(t) = lim
∆t→0

P (t < X ≤ t+ ∆t | X > t)

∆t
.
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Definition 2.2. Let hY be the hazard rate function of another random variable Y . We say that X is said
to be smaller than Y in the hazard rate order, denoted by X ≤hr Y , if hX(t) ≥ hY (t), for all t, or if
G(t)/F (t) is increasing in t for which the ratio is well defined.

Recall that the reversed hazard rate function rX of a random variable X , at the point t is defined as

rX(t) = lim
∆t→0

P (t−∆t ≤ X < t | X < t)

∆t
.

Definition 2.3. Let rY be the reversed hazard rate function of another random variable Y . We say that X
is smaller than Y in the reversed hazard rate order if G(t)/F (t) is increasing in t for which the ratio is well
defined, or if rX(t) ≤ rY (t), for all t, denoted by X ≤rh Y .

Recall that the Glaser’s function ηX of a random variable X (see [2]), at the point t is defined as

ηX(t) = −f
′(t)
f(t)

= −
(

log f(t)
)′
,

where f is the density function of X .

Definition 2.4. Let ηY be the Glaser’s function of another random variable Y . We say that X is smaller
than Y in the likelihood ratio order if ηX(t) ≥ ηY (t) for all t, denoted by X ≤lr Y .

The relationships among the four first orders are illustrated in the following diagram.

X ≤lr Y ⇒ X ≤hr Y
⇓ ⇓

X ≤rh Y ⇒ X ≤st Y

3 Upper and lower bounds
In this section, we study conditions under which simple spacings are ordered in the likelihood ratio ordering.
Here we consider a sequence of i.ni.d. random variables, X1, . . . , Xn, a set of independent exponential
random variables with Xi having hazard rate λi, for i = 1, . . . , n and another set of independent and
identically distributed exponential random variables with a common hazard rate.

3.1 Lower bounds
In the following result, we provide a lower bound for the Glaser’s function of spacingsD1:n, D2:n, . . . , Dn:n

from the sequence of i.ni.d. random variables X1, . . . , Xn.

Theorem 3.1. (see [8]) LetX1, . . . , Xn be independent exponential random variables such thatXi has haz-
ard rate λi, for i = 1, . . . , n, and Y1, . . . , Yn be a random sample of size n from an exponential distribution
with common hazard rate θ. If λ ≤ θ, then

Ci:n ≤lr Di:n,

for i = 1, . . . , n, where Di:n and Ci:n are the i ’th spacing from Xi’s and Yi’s, respectively, and λ =∑n
j=1 λj/n.

An interesting special case, which is a consequence of the above result, is the following.
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Proposition 3.1. (see [8]) Let X1, . . . , Xn be independent exponential random variables such that Xi has
hazard rate λi, for i = 1, . . . , n, Y1, . . . , Yn be a random sample of size n from an exponential distribution
with common hazard rate θ = max {λ1, . . . , λn}. Then

Ci:n ≤lr Di:n,

for i = 1, . . . , n, where Di:n and Ci:n are the i ’th spacing from Xi’s and Yi’s, respectively.

3.2 Upper bounds
In the following result, we provide an upper bound for the Glaser’s function of spacings from the sequence
of i.ni.d. random variables X1, . . . , Xn.

Theorem 3.2. (see [8]) LetX1, . . . , Xn be independent exponential random variables such thatXi has haz-
ard rate λi, for i = 1, . . . , n, and Z1, . . . , Zn be a random sample of size n from an exponential distribution

with common hazard rate β. If β ≤
∑n−i+1
j=1 λ(j)

n−i+1 , then

Di:n ≤lr Hi:n,

for i = 1, . . . , n, where Di:n and Hi:n are the i ’th spacing from Xi’s and Zi’s, respectively.

An interesting special case, which is a consequence of the above result, is the following.

Proposition 3.2. (see [8]) Let X1, . . . , Xn be independent exponential random variables such that Xi has
hazard rate λi, for i = 1, . . . , n, Z1, . . . , Zn be a random sample of size n from an exponential distribution
with common hazard rate β = min {λ1, . . . , λn}. Then

Di:n ≤lr Hi:n,

for i = 1, . . . , n, where Di:n and Hi:n are the i ’th spacing from Xi’s and Zi’s, respectively.

4 Discussion
A few applications of, and complements to, the results of Section 3 are briefly described below. In this
section, we consider a special case, the so called multiple-outlier exponential models. These models are
defined as follows: Let X1, . . . , Xn be a set of independent exponential random variables such that Xi

has hazard rate λ for i = 1, . . . , p and Xj has hazard rate λ∗ for j = p + 1, . . . , n. Some researchers
have investigated these models of random variables, see [9] for a recent review. The simple spacings and
normalized spacings from a multiple-outlier exponential model are, respectively, defined by

Di:n (p, q;λ, λ∗) = Xi:n −Xi−1:n

and
D∗i:n (p, q;λ, λ∗) = (n− i+ 1)Di:n (p, q;λ, λ∗) ,

for i = 1, . . . , n, with X0:n ≡ 0, q = n− p ≥ 1 and p ≥ 1.

Theorem 4.1. (see [8]) Let X1, X2, . . . , Xn follow a multiple-outlier exponential model with parameters λ
and λ∗. If λ ≥ λ∗, p ≥ 1 and q ≥ 1, then

Di:n(p− k2, q + k2;λ, λ∗) ≥lr Di:n(p, q;λ, λ∗) ≥lr Di:n(p+ k1, q − k1;λ, λ∗),

where 1 ≤ k1 ≤ q, 1 ≤ k2 ≤ p and i = 1, . . . , n.
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Developing statistical methodologies for anthropometry
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Abstract
Fitting Ready To Wear clothes is a basic problem for customer and apparel companies. One of the most
important problems to develop new patterns and grade to all sizes is the lack of updated anthropometric
data. In this context, in 2006 the Spanish Ministry of Health promoted a 3D anthropometric study of the
Spanish female population. A sample of 10.415 Spanish females from 12 to 70 years old randomly selected
was measured. The obtained anthropometric data constitute valuable information to understand the body
shape of the population. A very important challenge is to define an optimal sizing system. A sizing system
classifies a specific population into homogeneous subgroups based on some key body dimensions. Our
research group has developed some clustering methodologies using some of the ideas of [9, 11], among
others. In addition, the shape of the 10.415 women is described by using a set of correspondence points.
In this case, we have used the statistical shape analysis [4] to divide the population into efficient sizes
according to their shape. In the multivariate accommodation problem, a set of representative human models
is commonly used to accommodate a certain percentage of the population. We use the archetypal analysis
[2] to that end. The archetypes returned by the archetypal analysis are not necessarily observed individuals.
However, in human modeling it is crucial that the archetypes are individuals of the target population. An
algorithm inspired by the Partitioning Around Medoids (PAM) clustering algorithm to obtain necessarily
observed individuals, which we call archetypoids, has been proposed. All the just mentioned statistical
methodologies use the anthropometric data of the Spanish survey. Besides, the archetypal analysis is also
applied to a well-known anthropometric database of aircraft pilots. The methodologies are also gathered
together in an R package called Anthropometry, soon freely available.

Keywords: Anthropometric data, Clustering, Statistical shape analysis, Archetypal analysis.
AMS subject classifications: 62P30.

1 Introduction
Both apparel development process and human modelling require updated anthropometric data to develop
new patterns and products adapted to the current target population. Physical measurements have been tra-
ditionally taken by using rudimentary methods like calipers, rulers or measuring tapes [8, 10]. These kinds
of procedures are very easy to use and no particularly expensive. However, they present an important draw-
back: the set of measurements obtained and therefore the shape information, is imprecise and inaccuracy. In
addition, this process always needs the interaction with real subjects with a consequent increment of time.
The development of new 3D body scanner technology constitutes a step forward in the way of collecting
anthropometric data. They capture the 3D shape images of the people being measured and provide accurate
and reproducible anthropometric data [6, 7]. The great potential of the scanning systems for the digitiza-
tion of the human body has contributed to promote new anthropometric surveys in different countries (USA,
France, UK, Germany and Australia among others). In this context, the Spanish Ministry of Health promoted
∗e-mail: Guillermo.Vinue@uv.es
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a 3D anthropometric study of the Spanish female population. This survey aimed to generate anthropometric
data from Spanish women for the clothing industry [1]. The scan anthropometric data are mainly used in two
specific fields: in Anthropometry, the body measurements serves to define sizing systems for the apparel in-
dustry. In Ergonomics, representative human models of the population are searched; for example, to design
aircraft cockpits. These data constitute valuable information to understand the body shape of the population.
Therefore, rigorous statistical methodologies to deal with must be developed. The methodologies we have
developed concerns clustering, the statistical shape analysis and the archetypal analysis. All of them analyze
the data from the anthropometric study of the Spanish female population. In addition, the archetypal analysis
is also applied to an anthropometric database of aircraft pilots. For a more efficient use of the anthropomet-
ric data, software tools must be introduced. For this reason, an R package called Anthropometry has been
created to gather together all the mentioned methodologies. The outline of the paper is as follows: Section 2
describes the data sets used and the foundation of the statistical methods developed. Some illustrative results
are given in Section 4. Finally, in Section 4 some conclusions end the paper.

2 Materials and Methods
In this section, the databases used for all the calculus is first presented. Next, each approach is shortly
summarized.

2.1 Our datasets

Spanish anthropometric survey

In 2006 a 3D anthropometric study of the Spanish female population was organized by the Spanish Min-
istry of Health supported by the main Spanish companies in the garment industry and developed by the
Biomechanics Institute of Valencia together with researchers from the statistical and nutritional areas. After
finishing the study, a database was generated formed by 10.415 Spanish females from 12 to 70 years old
randomly selected from the official Postcode Address File, 95 anthropometric measurements and 66 points
(landmarks) on the woman’s body representing its shape. Ref. [1] details the experimental design, subject
recruitment, data collection and data processing. The website http://antropometria.ibv.org/ was also created
as a query tool for companies (in Spanish only).

USAF survey

This data set comes from the 1967 United States Air Force (USAF) Survey. It was conducted during
the first three months of 1967 under the direction of the Anthropology Branch of the Aerospace Medi-
cal Research Laboratory. A total of 202 variables (including body dimensions and background variables)
were taken on 2420 Air Force personnel between 21 and 50 years of age. The data set is available from
http://www.dtic.mil/dtic/.

http://antropometria.ibv.org/
http://www.dtic.mil/dtic/
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2.2 Clustering
One of the most important issues in the apparel development process is to define a sizing system that provides
a good fit to the majority of the population. A sizing system classifies a specific population into homogeneous
subgroups based on some key body dimensions. Hence, clustering is the natural statistical approach to be
applied. Our research group has developed some clustering methodologies using some of the ideas of [9, 11],
among others.

2.3 Statistical shape analysis
The k-means clustering algorithm has been widely used to divide the population into morphologies, see e.g.
[3]. The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean
distance from each point, to the centroid of the cluster to which it belongs. Two fundamental concepts of the
statistical shape analysis are the Procrustes mean and the Procrustes distance. Therefore, it arises in a natural
way the idea of integrating the Procrustes mean and the Procrustes distance into k-means. In this way, we
can use the k-means algorithm in the shape analysis context. We propose to use the k-means algorithm to
divide the population into efficient sizes according to their body shapes represented by landmarks, instead
of using it by just employing a set of anthropometric variables as usual.

2.4 Archetypal Analysis
In the multivariate accommodation problem, a small group of representative cases (human models) which
represents the anthropometric variability of the target population is commonly used. The appropriate selec-
tion of this small group is critical in order to accommodate a certain percentage of the population. We use
the archetypal analysis [2] to that end. The archetypes returned by the archetypal analysis are a convex com-
bination of the sampled individuals, but they are not necessarily observed individuals. However, in human
modeling it is crucial that the archetypes are real people. We have developed an algorithm inspired by the
PAM clustering method to obtain necessarily observed individuals (called archetypoids). We have applied
this algorithm in a cockpit design problem and in an apparel design problem.

3 Results
As an illustration, some graphical results provided by our methodologies are shown. Fig. 1 (left plot) shows
the bust and neck to ground measurements of the women, jointly with the medoids provided by one of the
clustering methodologies proposed and the prototypes defined by the European Normative to sizing system
[5]. The 3D mean shape of one cluster returned by the k-means algorithm adapted to the statistical shape
analysis can be also seen in Fig. 1 (right plot). Fig. 2 represents the percentiles and one skeleton plot of the
archetypes obtained from the aircraft pilots database. Finally, Fig. 3 shows the 3D shape of the trunk of an
archetypoid woman.
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Figure 1: Medoids provided by one proposed clustering methodology jointly with the prototypes defined
by the European Normative (figure a) and 3D mean shape returned by the k-means algorithm adapted to the
statistical shape analysis (figure b).
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Figure 2: Percentiles of the aircraft pilots archetypes and one illustrative archetype.

Figure 3: 3D shape of the trunk of an archetypoid woman.
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4 Conclusions
Updated anthropometry data of the target population constitute valuable information to optimize sizing sys-
tems and reduce the design process cycle. Rigorous statistical methodologies including clustering, statistical
shape analysis and archetypal analysis have been specially developed to deal with anthropometric data. They
use the data obtained from a 3D anthropometric study of the Spanish female population and from an aircraft
pilots survey. All these methodologies are gathered in an R package, soon freely available.

Acknowledgements: This research has been partially supported by grants TIN2009–14392–C02–01 and
TIN2009–14392–C02–02.
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The zero area Brownian bridge

Maik Görgens∗
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Abstract
We consider the Brownian motionW on the interval [0, 1]. The Brownian bridgeB arises from the Brownian
motion by pinning W1 down to 0, i.e., the Brownian bridge arises by conditioning the Brownian motion to
fulfill W1 = 0. We condition the Brownian bridge further by requiring

∫ 1

0
Bsds = 0. We call the resulting

Gaussian process on [0, 1] zero area Brownian bridge and denote it by M . We study properties of M and
give anticipative as well as non-anticipative representations.

Keywords: Brownian bridge, Conditioning, Gaussian processes, Series expansions
AMS subject classifications: 60G15, 60H10, 60J65

1 Introduction
In [2] the notion of conditioned Gaussian processes was introduced. The aim of this note is to explain what
we mean by conditioned Gaussian processes, to present the main results of [2], and to apply them to a
Brownian motion on [0, 1] conditioned to be zero at time one and having vanishing integral.
Let (C([0, T ]), ‖ · ‖∞) be the separable Banach space of continuous functions on [0, T ] equipped with the
supremum norm ‖f‖∞ = sup0≤s≤T |f(s)|, f ∈ C([0, T ]). Let C denote the Borel σ-algebra on C([0, T ]).
The dual space C([0, T ])∗ of C([0, T ]) can be identified with the space of signed finite Borel measures on
[0, T ]. For f ∈ C([0, T ]) and a ∈ C([0, T ])∗ we use the notation a(f) and

∫
f(s) a(ds) interchangeably. In

particular, we use the second form if the integration only runs over a subset of [0, T ].
Let X = (Xs)s∈[0,T ] be a continuous Gaussian process defined on a probability space (Ω,A,P). Assume
EXs = 0 for all s ∈ [0, T ] and let RX : [0, T ] × [0, T ] → R be the covariance function of X , RX(s, t) =
EXsXt. A condition for X is an element a ∈ C([0, T ])∗ and X fulfills the condition a if a(X) = 0, almost
surely. Let A ⊂ C([0, T ])∗ be a finite set of conditions. We define a probability measure P(A) on (Ω,A) by

P(A)(F ) = P(F | a(X) = 0 for all a ∈ A), F ∈ A, (1)

and let P (A)
X be the induced measure on (C([0, T ]), C) of X under P(A). Though we condition on an event

of probability zero in (1), the measure P(A) is well defined since a(X) is Gaussian and we condition on
a(X) = 0 for all a ∈ A (see also Section 9.3 in [3]).
A continuous Gaussian process X(A) = (X

(A)
s )s∈[0,T ] defined on a probability space (Ω′,A′,P′) is a con-

ditioned process of X with respect to the set of conditions A if its induced measure PX(A) on (C([0, T ]), C)
coincides with P

(A)
X . The conditioned process is thus only defined in law. The process X defined on

(Ω,A,P(A)) is a version of the conditioned Gaussian process of X (defined on (Ω,A,P)) with respect to the
conditions A.
We now introduce the zero area Brownian bridge.
∗e-mail: maik@math.uu.se
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Example (The zero area Brownian bridge). We consider the standard linear Brownian motionW = (Ws)s∈[0,1]

and condition it by the set of conditions A = {a1, a2} ⊂ C([0, 1])∗ defined by

a1(f) = f(1) and a2(f) =

∫ 1

0

f(s)ds, f ∈ C([0, 1]).

We denote the conditioned process of W by the set of conditions A by M = (Ms)s∈[0,1], i.e., we put
M = W (A), and call it the zero area Brownian bridge.

2 A series expansion and basic properties of the conditioned process
The following result will be crucial for our work.

Theorem 2.1 (Theorem 3.5.1 in [1]). For every continuous Gaussian process X = (Xs)s∈[0,T ] there is
a separable Hilbert space H and a linear and bounded operator u : H → C([0, T ]) such that for every
orthonormal basis (hi)

∞
i=1 ⊂ H the series

∞∑
i=1

ωi(uhi) (2)

converges almost surely in C([0, T ]) and

Xs =

∞∑
i=1

ωi(uhi)(s)

holds in the sense of finite-dimensional distributions, where (ωi)
∞
i=0 is a sequences of independent standard

normal random variables defined on a probability space (Ω,A,P).

We say that u is the associated operator of X . The law of X is completely described by its associated
operator. In particular, for the covariance function RX(s, t) = EXsXt of X it holds

RX(s, t) =

∞∑
i=1

(uhi)(s)(uhi)(t) = 〈u∗δs, u∗δt〉, (3)

where u∗ : C([0, T ])∗ → H is the adjoint operator of u, i.e., 〈u∗a, h〉 = a(uh) for all h ∈ H and
a ∈ C([0, T ])∗, δs is the point evaluation functional, i.e., δs(f) = f(s) for f ∈ C([0, T ]), and 〈·, ·〉 denotes
the scalar product on H . Hence, a change of the orthonormal basis in (2) gives another process X ′, in
general different from X , but, by (3), X and X ′ have the same finite-dimensional distributions.

Example (The zero area Brownian bridge – continued). The associated operator of the Brownian motion
W is u : L2([0, 1])→ C([0, 1]) with

(uh)(s) =

∫ s

0

h(x) dx

for h ∈ L2([0, 1]). The trigonometric basis in L2([0, 1]),

{en : n ≥ 0} = {1} ∪ {
√

2 cos(πnx) : n ≥ 1}

yields the well known representation

Ws = ω0s+
√

2

∞∑
n=1

ωn
sin(πns)

πn
.
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Given a finite set of conditions A we define the closed linear subspace

H(A) = {h ∈ H : a(uh) = 0 for all a ∈ A} ⊂ H
and call it the reduced Hilbert space with respect to A. Let H(A) ⊂ H be the orthogonal complement of
H(A) (we write H(A) = H 	 H(A)). We call H(A) the detached subspace of H with respect to A. By
definition of u∗,

H(A) = {h ∈ H : 〈u∗a, h〉 = 0 for all a ∈ A}
= {h ∈ H : h is orthogonal to u∗a for all a ∈ A} ⊂ H,

and thus H(A) is spanned by the elements u∗a,

H(A) = span{u∗a : a ∈ A},
implying that H(A) is (at most) of dimension N .
Define

X(A) =

∞∑
i=1

ωi(ufi), (4)

where (fi)
∞
i=1 ⊂ H(A) is an orthonormal basis in H(A). By (3), the law of X(A) is independent of the

choice of the orthonormal basis in H(A) and since (4) differs from (2) only by a finite number of terms
(given that we assume that {f1, f2, . . .} is a subset of {h1, h2, . . .}) the series in (4) converges in C([0, T ])
almost surely.

Theorem 2.2. The process X(A) defined in (4) is a conditioned process of X with respect to A.

Let RX(A) be the covariance function of the conditioned process X(A) of X with respect to A ⊂ C([0, T ])∗

and let (ei)
N
i=1 ⊂ H(A) be an orthonormal basis in the detached subspace H(A).

Proposition 2.1. We have

RX(A)(s, t) = RX(s, t)−
N∑
i=1

(uei)(s)(uei)(t).

Example (The zero area Brownian bridge – continued). It holds

(u∗a1)(x) = 1 and (u∗a2)(x) = 1− x.
The detached subspace H(A) of L2([0, 1]) with respect to the set of conditions A = {a1, a2} ⊂ C([0, 1])∗

is thus H(A) = span{1, 1 − x}. An orthonormal basis in H(A) is {e1, e2} = {1,
√

3(1 − 2x)}. Hence,
according to Proposition 2.1, the covariance of the zero area Brownian bridge M = W (A) is given by
(0 ≤ s, t ≤ 1)

RM (s, t) = RW (s, t)− (ue1)(s)(ue1)(t)− (ue2)(s)(ue2)(s)

= min{s, t} − st− 3(s− s2)(t− t2).

Assume that the set {u∗ai : 1 ≤ i ≤ N} ⊂ H(A) is linearly independent in H and define a matrix
B = (Bij)

N
i,j=1 and a vector b(X) = (b1(X), . . . , bN (X)) by Bij = ai(uej) and bi = ai(X).

Theorem 2.3. The matrixB is invertible and an anticipative representation of the conditioned processX(A)

is

X(A) = X −
N∑
i=1

ξi(X)(uei),

where ξ(X) = (ξ1(X), . . . , ξN (X))τ is given by ξ(X) = B−1b(X).
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Example (The zero area Brownian bridge – continued). In our example the matrix B and the vector b
become

B =

(
1 0

1/2 1/(2
√

3)

)
and b =

(
W1

I1

)
,

where I1 =
∫ 1

0
Wx dx. Solving the linear equation systemBξ = b yields ξ1 = W1 and ξ2 =

√
3(2I1−W1).

By Theorem 2.3, an anticipative representation for M is

Ms = Ws −W1s−
√

3(2I1 −W1)
√

3(s− s2)

= Ws − s(3s− 2)W1 − 6s(1− s)I1.

3 A non-anticipative representation

For 0 ≤ s ≤ T , let Fs ⊂ C be the smallest σ-algebra on C([0, T ]) such that all δr, 0 ≤ r ≤ s, are Fs-B(R)-
measurable, where B(R) is the Borel σ-algebra on R. A progressively measurable functional onC([0, T ]) is
a mapping β : [0, T ]×C([0, T ])→ R such that for each 0 ≤ s ≤ T , the restriction of β to [0, s]×C([0, T ])
is B([0, s])⊗ Fs-B(R)-measurable.

Theorem 3.1. The probability measures PX and PX(A) are equivalent on Fs if and only if there exist
e′i ∈ H(A), 1 ≤ i ≤ N , such that

(ue′i)(x) = (uei)(x), 0 ≤ x ≤ s. (5)

Otherwise PX and PX(A) are orthogonal on Fs.

Assuming that there is a progressively measurable functional β on C([0, T ]) such that X is a strong solution
to a stochastic differential equation of the form

dXs = αdWs + β(s,X)ds, X0 = 0, 0 ≤ s < T,

an application of Girsanov’s Theorem yields the following result.

Theorem 3.2. Assume that the supremum over all s for which (5) holds is T . Then there is a Brown-
ian motion W ′ = (W ′s)s∈[0,T ] defined on the probability space (C([0, T ]), C,PX(A)) and a progressively
measurable functional δ on C([0, T ]) such that the conditioned process X(A) is a (strong) solution of the
stochastic differential equation

dX(A)
s = αdW ′s + δ(s,X(A))ds, X

(A)
0 = 0, 0 ≤ s < T. (6)

Almost surely, for almost all 0 ≤ s < T , the drift term δ(s,X(A)) is given by

δ(s,X(A)) = lim
r↘0

E[X
(A)
s+r | Fs]−X(A)

s

r
.

If we further assume that X is a Markov process, we are able to calculate the drift term in (6) explicitly.
Define Gaussian processes I(A),i by

I(A),i
s =

∫ s

0

X(A)
x ai(dx), 0 ≤ s ≤ T, 0 ≤ i ≤ N.

Theorem 3.3. The Gaussian process (X(A), I(A),1, . . . , I(A),N ) is an (N + 1)-dimensional (in general
time-inhomogeneous) Markov process.
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Define a matrix Ds and a vector ds by

Ds =


g(s) (ue1)(s) . . . (ueN )(s)∫ T

s+
g(x) a1(dx)

∫ T
s+

(ue1)(x) a1(dx) . . .
∫ T
s+

(ueN )(x) a1(dx)
...

...
. . .

...∫ T
s+
g(x) aN (dx)

∫ T
s+

(ue1)(x) aN (dx) . . .
∫ T
s+

(ueN )(x) aN (dx)


and

ds =


X

(A)
s

−I(A),1
s

...
−I(A),N

s

 .

Theorem 3.4. For every s < t there are FX
(A)

s -measurable random variables ξ0, . . . , ξN such that

E[X
(A)
t |FX

(A)

s ] = ξ0g(t) +

N∑
i=1

ξi(uei)(t).

Assume that the matrix Ds is invertible. Then ξ = (ξ0, . . . , ξN )τ is given by ξ = D−1
s ds.

Example (The zero area Brownian bridge – continued). All assumptions of this section are fulfilled by the
Brownian motionW and the conditions a1 and a2. Define Js =

∫ s
0
Mx dx, 0 ≤ s ≤ 1. Then (Ms, Js)s∈[0,1]

is a Markov process (Theorem 3.3) and M is a solution of the stochastic differential equation (Theorem 3.2)

dMs = dWs + δ(s,M)ds, M0 = 0, 0 ≤ s < 1,

where δ is a progressively measurable functional on C([0, 1]). By Theorem 3.4, for 0 ≤ s ≤ t < 1, we have

E[Mt | FMs ] = ξ0 + ξ1t+ ξ2
√

3(t− t2),

where ξ = (ξ0, ξ1, ξ2) is the solution of the system of linear equations Dsξ = ds with ds = (Ms, 0,−Js)
and

Ds =

 1 s
√

3(s− s2)
1 1 0

1− s (1− s2)/2
√

3(1− s2)/2− (1− s3)/
√

3

 .

Solving this system of linear equations yields

ξ0 =
Ms(2s

2 − s− 1)− 6Jss

(s− 1)3
, ξ1 = −Ms(2s

2 − s− 1)− 6Jss

(s− 1)3

ξ2 = −
√

3
Ms(s− 1)− 2Js

(s− 1)3
,

and thus

E[Mt | FMs ] =
Ms(2s

2 − s− 1)− 6Jss

(s− 1)3
− t Ms(2s

2 − s− 1)− 6Jss

(s− 1)3

− 3(t− t2)
Ms(s− 1)− 2Js

(s− 1)3
.
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We have

lim
r↘0

E[Ms+r | FMs ]−Ms

r
= − 4Ms

1− s −
6Js

(1− s)2
.

Hence, M has the stochastic differential

dMs = dWs −
4Ms

1− sds−
6Js

(1− s)2
ds, M0 = 0, 0 ≤ s < 1.

Acknowledgements: The author wishes to thank Ingemar Kaj and Svante Janson for their comments and
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Directed random graphs and convergence to the Tracy-Widom
distribution
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Abstract
We consider a directed random graph on the 2-dimensional integer lattice, placing independently, with prob-
ability p, a directed edge between any pair of distinct vertices (i1, i2) and (j1, j2), such that i1 ≤ j1 and
i2 ≤ j2. Let Ln,m denote the maximum length of all paths contained in an n×m rectangle. The asymptotic
distribution for a centered/scaled version of Ln,m, for fixed m, as n → ∞, was derived in [3]. Here, we
address the problem of finding the limit when both n and m tend to infinity, so that m ∼ na. We make
a sequence of transformations in order to exhibit a resemblance of our model to a last passage percolation
model. This requires the use of suitably defined regenerative points (called skeleton points), together with a
number of pathwise and probabilistic bounds. Making use of a Komlós-Major-Tusnády coupling, as in [2],
with a last-passage Brownian percolation model, we are able to prove that, for a < 3/14, the asymptotic
distribution is the Tracy-Widom distribution.

Keywords: Random graph, Last passage percolation, Strong approximation, Tracy-Widom distribution
AMS subject classifications: 05C80, 60F17, 60K35, 06A06

1 Introduction
A directed version of a standard Erdős-Rényi random graph, sometimes called random acyclic directed
graph, with vertex set {1, 2, . . . , n} is defined as follows: For each pair of vertices {i, j} toss a coin with
probability of heads equal to p, 0 < p < 1, independently from pair to pair; if a head shows up then
introduce an edge directed from min(i, j) to max(i, j). There is a natural extension of this graph to the
whole of Z and, moreover, to Z× Z where the total order on the vertex set is replaced by the product order:
(i1, i2) ≺ (j1, j2) if the two pairs are distinct and i1 ≤ i2, j1 ≤ j2. In the last model, coins are tossed only
for pairs of vertices which are comparable in this partial order.
A path of length ` in the directed graph is a sequence (i0, i1, . . . , i`) of vertices i0 ≺ i1 ≺ . . . ≺ i` such that
there is an edge between any two consecutive vertices. Foss and Konstantopoulos [4] considered a random
directed graph with vertex set Z and studied the maximum length of all paths with start and end points in the
interval [i, j], denoted by L[i, j]. They showed that there exists a deterministic constant C = C(p) such that

lim
n→∞

L[1, n]/n = C a.s. (1)

A central limit theorem for L[1, n] is established in [3], where is, in addition, proved a central limit theorem
for the maximum length of all paths in the two-dimensional case. If Ln,m denotes the maximum length of
all paths of the graph on Z× Z, restricted to {0, . . . , n} × {1, . . . ,m}, then there is a positive κ (depending
on p and the fixed integer m), such that(

L[nt],m − Cnt
κ
√
n

, t ≥ 0

)
(d)−−−−→

n→∞
(Zt,m, t ≥ 0),

∗Corresponding author, e-mail: katja.trinajstic@math.uu.se
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whereZ•,m is the stochastic process defined in terms ofm independent standard Brownian motions,B(1), . . . , B(m),
via the formula

Zt,m := sup
0=t0<t1···<tm−1<tm=t

m∑
j=1

[B
(j)
tj −B

(j)
tj−1

], t ≥ 0.

One can speak of Z as a Brownian directed percolation model, the terminology stemming from the picture
of a “weighted graph” on R × {1, . . . ,m} where the weight of a segment [s, t] × {j} equals the change
B

(j)
t −B(j)

s of a Brownian motion. If a path from (0, 0) to (t,m) is defined as a union
⋃m
j=1[tj−1, tj ]×{j}

of such segments, then Z represents the maximum weight of all such paths.
Baryshnikov [1], answering an open question by Glynn and Whitt [5], showed that

Z1,m
(d)
= λm,

where λm is the largest eigenvalue of a GUE matrix of dimension m. Since Z•,m is 1/2-self-similar, we see
that

Zt,m
(d)
=
√
tλm.

Fluctuations of λm around the centering sequence 2
√
m have been quantified by Tracy and Widom [7] who

showed the existence of a limiting law, denoted by FTW:

m1/6(λm − 2
√
m)

(d)−−−−→
m→∞

FTW.

A natural question then, raised in [3], is whether one can obtain FTW as a weak limit of Ln,m when n and m
tend to infinity simultaneously. Our paper is concerned with resolving this question. To see what scaling we
can expect, rewrite the last display, for arbitrary t > 0, as

m1/6(
Zt,m√
t
− 2
√
m)

(d)−−−−→
m→∞

FTW.

A statement of the form X(t,m)
(d)−−−−→

m→∞
X , where the distribution of X(t,m) does not depend on the

choice of t > 0, implies the statementX(t,m(t))
(d)−−−→

t→∞
X , for any functionm(t) such thatm(t) −−−→

t→∞
∞.

Hence, upon setting m = [ta], we have

ta/6
(
Zt,[ta]√

t
− 2
√
ta
)

(d)−−−→
t→∞

FTW. (2)

It is reasonable to assume that an analogous limit theorem holds for a centered scaled version of the largest
length Ln,[na], namely that

na/6
(
Ln,[na] − c1n

c2
√
n

− 2
√
na
)

(d)−−−−→
n→∞

FTW, (3)

where c1, c2 are appropriate constants. Since we are talking about interchange of limits here, it is also
reasonable to assume that (3) holds provided that a is small enough.

2 Skeleton points

In a directed random graph on Z exists, almost surely, a random integer sequence {Γr, r ∈ Z} with the
property that for all r, all i < Γr, and all j > Γr, there is a path from i to Γr and a path from Γr to j. The
existence of such points, referred to as skeleton points, is established in [3]. Since the directed Erdős-Rényi
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graph is invariant under translations, so is the sequence of skeleton points, i.e., {Γr, r ∈ Z} has the same
law as {n + Γr, r ∈ Z}, for all n ∈ Z. Moreover, it turns out that the sequence forms a stationary renewal
process. If we enumerate the skeleton points according to · · · < Γ−1 < Γ0 ≤ 0 < Γ1 < · · · , we have that
{Γr+1 − Γr, r ∈ Z} are independent random variables, whereas {Γr+1 − Γr, r 6= 0} are i.i.d. Stationarity
implies that the law of the omitted difference Γ1 − Γ0 has a density which is proportional to the tail of the
distribution of Γ2 − Γ1. In [3] it is shown that the distance Γ2 − Γ1 between two successive skeleton points
has a finite 2nd moment. One can follow the same steps of the proof, to show that in our case, with constant
edge probability p, this random variable has moments of all orders. Moreover, one can show that for some
α > 0 (the maximal such α depends on p) it holds that Eeα(Γ2−Γ1) <∞.
The rate λ of the sequence of skeleton points can be expressed as an infinite product:

λ0 :=
1

E(Γ2 − Γ1)
=

∞∏
k=1

(1− (1− p)k)2.

The most important property of the skeleton points is that if γ is a skeleton point, and if i ≤ γ ≤ j, then a
path with length L[i, j] (a maximum length path) must necessarily contain γ. This crucial property will be
used several times, especially since, restriction of the graph on the interval between two successive skeleton
points is independent of the restriction on the complement of the interval. Hence, for every i < j the
following equality holds

L[Γi,Γj ] = L[Γi,Γi+1] + L[Γi+1,Γi+2] + · · ·+ L[Γj−1,Γj ],

i.e., L[Γi,Γj ] is a sum of j − i i.i.d. random variables.
Consider now a directed random graph G with vertices Z × Z. We refer to the set Z × {j} as “line j” or
“jth line”, and note that the restriction of G onto Z × {j} is a directed Erdős-Rényi random graph on Z.
We denote this restriction by G(j). Typically, a superscript (j) will refer to a quantity associated with this
restriction. For example, for a ≤ b,

L(j)[a, b] := the maximum length of all paths in G(j) with vertices between (a, j) and (b, j).

Clearly, the {G(j), j ∈ Z} are i.i.d. random graphs, identical in distribution to the directed Erdős-Rényi
random graph. Therefore, as in (1), for each j ∈ Z,

lim
n→∞

L(j)[1, n]/n = C a.s.

In order to be able to resemble Ln,m as a sum of i.i.d. random variables, we need to slightly change the
definition of a skeleton point in G.

Definition 2.1 (Skeleton points inG). A vertex (i, j) of the directed random graphG is called skeleton point
if it is a skeleton point for G(j) (for any i′ < i < i′′, there is a path from (i′, j) to (i, j) and a path from
(i, j) to (i′′, j)) and if there is an edge from (i, j) to (i, j + 1).

Therefore, the skeleton points on line j are obtained from the skeleton point sequence of the directed Erdős-
Rényi random graph G(j) by independent thinning with probability p. When we refer to skeleton points on
line j, we shall be speaking of this thinned sequence. The elements of this sequence are denoted by

· · · < Γ
(j)
−1 < Γ

(j)
0 ≤ 0 < Γ

(j)
1 < Γ

(j)
2 < · · ·

and have rate

λ =
1

E(Γ
(j)
2 − Γ

(j)
1 )

= pλ0 = p

∞∏
k=1

(1− (1− p)k)2.
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In addition, it is shown in [4] that C can also be expressed as

C =
EL[Γ1,Γ2]

E(Γ2 − Γ1)
,

which is equivalent to

C =
EL[Γ

(j)
1 ,Γ

(j)
2 ]

E(Γ
(j)
2 − Γ

(j)
1 )

.

We define the variance by
σ2 := var(L[Γ

(j)
1 ,Γ

(j)
2 ]− C(Γ

(j)
2 − Γ

(j)
1 )).

For later use we need also the associated counting process of skeleton points on line j, which is defined by

Φ(j)(t)− Φ(j)(s) =
∑
r∈Z

1(s < Γ(j)
r ≤ t), s, t ∈ R, s ≤ t,

together with the agreement that
Φ(j)(0) = 0.

In other words, using the counting process we can write the last skeleton point on the line j before the point
(t, j) as Γ

(j)

Φ(j)(t)
.

3 Convergence to the Tracy-Widom distribution
A different model which, a priori, seems to bear little resemblance to ours, is the directed last passage
percolation model on Z2. We are given a collection of i.i.d. random variables indexed by elements of Z2

+.
A path from the origin to the point n ∈ Z2

+ is a sequence of elements of Z2
+, starting from the origin and

ending at n, such that the difference of successive members of the sequence is equal to the unit vector (0, 1)
or (1, 0). The weight of a path is the sum of the random variables associated with its members. Let Ln,m
be the largest weight of all paths from (0, 0) to (n,m). Assuming that the random variables have a finite
moment of order larger than 2, Bodineau and Martin [2] approximated partial sums of i.i.d. with Brownian
motions using the Komlós-Major-Tusnády (KMT) construction and showed that (3) holds for all sufficiently
small positive a (the threshold depending on the order of the finite moment). Relating the ideas from the
model above to the directed random graph, we are able to prove a similar result:

Theorem 3.1. Consider the directed random graph on Z × Z and let Ln,m be the maximum length of all
paths between two vertices in {0, 1, . . . , n}× {1, 2, . . . ,m}. Let λ, C, σ2 be defined as above. Then, for all
0 < a < 3/14,

na/6
(
Ln,[na] − Cn√

λσ2
√
n
− 2
√
na
)

(d)−−−−→
n→∞

FTW, (4)

where FTW is the Tracy-Widom distribution.

We begin the proof of Theorem 5 by introducing a quantity Sn,m which resembles a last passage percolation
path weight,

1

σ
Sn,m = sup

0=t0<t1···<tm−1<tm=t

m∑
j=1

Φ(j)(tj)∑
k=Φ(j)(tj−1)+1

χ
(j)
k ,

where
χ

(j)
k :=

1

σ

{
L(j)[Γ

(j)
k−1,Γ

(j)
k ]− C(Γ

(j)
k − Γ

(j)
k−1)

}
.
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In our case {χ(j)
k , j ≥ 1, k ≥ 1} represent weights in the last passage percolation on Z2

+. It can be proven
that the maximum lenght of all paths in {0, 1, . . . , n} × {1, 2, . . . ,m}, Ln,m, is close enough to Sn,m, i.e.,

Sn,[na] − (Ln,[na] − Cn)

n1/2−a/6
(p)−−−−→

n→∞
0.

Thus, taking into account (2), it remains to show that

σ−1Sn,[na] − Zλn,[na]

n1/2−a/6
(p)−−−−→

n→∞
0

to prove (4). Using the Komlós-Major-Tusnády strong approximation result [6] we can for every j jointly
construct i.i.d. random variables {χ(j)

k , k ≥ 1} and B(j) so that they are close enough. In addition, in order
to, independently of the joint construction, take care of the random indices that appear in the expresion for
Sn,m we prove and make use of a convergence rate result for the counting processes {Φ(j), j ≥ 1}.
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Gibbs point process approximation based on Stein’s method
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Abstract
We develop Stein’s method in the setting of Gibbs point processes. This yields upper bounds for the total
variation distance between the distributions of two Gibbs point processes. Applications are provided to
various well-known processes and settings from spatial statistics and statistical physics.

Keywords: Conditional intensity, pairwise interaction process, birth-death process, Stein’s method, total
variation distance.
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1 Introduction
Gibbs processes form one of the most important classes of point processes in spatial statistics that may
incorporate dependence between the points, see [8, Chapter 6]. They are furthermore, mainly in the special
guise of pairwise interaction processes, one of the building blocks of modern statistical physics, see [9]. Up
to the somewhat technical condition of hereditarity, see Section 2, a Gibbs (point) process on a compact
metric space X is simply a point process whose distribution is absolutely continuous with respect to a
“standard” Poisson process distribution. It is thus a natural counterpart in the point process world to a
real-valued random variable that has a density with respect to some natural reference measure. A notorious
difficulty with Gibbs processes is that in most interesting cases their densities can only be specified up
to normalizing constants, which typically renders explicit calculations, e.g. of the total variation distance
between two such processes, difficult.
Based on Stein’s method we develop a theorem about upper bounds on the total variation distance between
Gibbs process distributions in a very general setting. These bounds provide natural rates of convergence in
many situations, and give explicit constants, which are small if one of the Gibbs processes is not too far
away from a Poisson process.
This article presents a summary of the results from [11].

2 Preliminaries

Let (X , d) be a compact metric space, which serves as the state space for all our point processes. We equip
X with its Borel σ-algebra B = B(X ). Let α 6= 0 be a fixed finite reference measure on (X ,B). If X has a
suitable group structure α is typically chosen to be the Haar measure. If X ⊂ RD, we tacitly use Lebesgue
measure and write |A| = LebD(A) for A ⊂ X . Denote by (N,N ) the space of finite counting measures
(“point configurations”) on X equipped with its canonical σ-algebra, see [7, Section 1.1]. A point process is
simply a random element of N.
∗Corresponding author, e-mail: kaspar.stucki@stat.unibe.ch
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Throughout the paper let Π be the Poisson process with intensity measure α, i.e. for pairwise disjoint
A1, . . . , An ∈ B the random variables Π(A1), . . . ,Π(An) are independent and for 1 ≤ i ≤ n, Π(Ai) has the
Poisson distribution with mean α(Ai). We use the definition of a Gibbs point process from spatial statistics.
Call a function u : N → R+ hereditary if for any ξ, η ∈ N with ξ ≤ η, we have that u(ξ) = 0 implies
u(η) = 0. A point process Ξ on X is called a Gibbs process if it has a hereditary density u with respect to
the Poisson process distribution L (Π), i.e. Ef(Ξ) = E(u(Π)f(Π)) for all measurable f : N→ R+. It will
be convenient to identify a Gibbs process by its conditional intensity. Let Ξ be a Gibbs process with density
u. We call the function λ(· | ·) : X ×N→ R+,

λ(x | ξ) =
u(ξ + δx)

u(ξ)
(1)

the conditional intensity (function) of Ξ. For this definition we use the convention that 0/0 = 0. It is
well-known that the conditional intensity is the α ⊗L (Ξ)-almost everywhere unique product measurable
function that satisfies the Georgii–Nguyen–Zessin equation

E
(∫
X
h(x,Ξ− δx) Ξ(dx)

)
=

∫
X
E
(
h(x,Ξ)λ(x |Ξ)

)
α(dx) (2)

for every measurable h : X ×N→ R+.
A Gibbs process Ξ on X is called a pairwise interaction process (PIP) if there exist β : X → R+ and
symmetric ϕ : X × X → R+ such that Ξ has the density

u(ξ) = cu
∏

1≤i≤n
β(xi)

∏
1≤i<j≤n

ϕ(xi, xj) (3)

for any ξ =
∑n
i=1 δxi ∈ N, where cu is the normalizing constant, which is usually not analytically com-

putable. We then denote the distribution of Ξ by PIP(β, ϕ). The PIP is called inhibitory if ϕ ≤ 1. The
conditional intensity of Ξ ∼ PIP(β, ϕ) is accordingly given by

λ(x | ξ) = β(x)

n∏
i=1

ϕ(x, xi). (4)

The following stability condition plays a crucial role for the proofs of our main results. A Gibbs process is
called locally stable if there exists an integrable function ψ∗ : X → R+ such that

λ(x | ξ) ≤ ψ∗(x)

Local stability is satisfied for many point process distributions traditionally used in spatial statistics, see [8,
p. 84 ff.]. However some processes from statistical physics, e.g. the Lennard–Jones process, are not locally
stable.
The total variation distance between two point processes H and Ξ is defined as

dTV (L (H),L (Ξ)) = sup
f∈FTV

|Ef(H)− Ef(Ξ)|, (5)

where FTV is the set of measurable functions f : N→ [0, 1].

3 Stein’s method for Gibbs process approximation
Stein’s method, originally conceived for normal approximation [12], has evolved over the last forty years
to become an important tool in many areas of probability theory and for a wide range of approximating
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distributions. See [3] for an overview of the first thirty years of this history. A milestone in the evolution
of Stein’s method was the discovery in [2] that a natural Stein equation may often be set up by choosing
as a right hand side the infinitesimal generator of a Markov process whose stationary distribution is the
approximating distribution of interest. Many important developments stem from this so-called generator
approach to Stein’s method, and several of them concern point process approximation, such as [5], [4], [10],
or [14].
In this section we develop the generator approach for Gibbs process approximation. For technical details
and the proofs of the statement we refer the reader to [11]. Let H ∼ Gibbs(λ) and Ξ ∼ Gibbs(ν) be Gibbs
processes. We assume that the approximating process H is locally stable. Define the generator

Ah(ξ) =

∫
X

[
h(ξ + δx)− h(ξ)

]
λ(x | ξ)α(dx) +

∫
X

[
h(ξ − δx)− h(ξ)

]
ξ(dx), (6)

for all h : N→ R in D(A), the domain ofA. It can be shown thatA is the generator of a spatial birth-death
process Z with birth rate λ(· | ·) and unit per capita death rate. Denote Zξ for the birth death process with
starting configuration ξ ∈ N, i.e. Zξ(0) = ξ. Furthermore L (H) is the unique stationary distribution, see
[6, Section 4.2 and Section 4.11, Problem 5] for more details.
We set up the Stein equation as

f(ξ)− Ef(H) = Ah(ξ), (7)

and its solution is given by

hf (ξ) = −
∫ ∞

0

[
Ef(Zξ(t))− Ef(H)

]
dt. (8)

Since Zξ(t) converges weakly to H as t → ∞, the function hf measures in some sense how long it takes
for Zξ to “forget” the starting configuration ξ. By the Stein equation (7) we can rewrite the total variation
distance between H and Ξ as

dTV (L (Ξ),L (H)) = sup
f∈FTV

|Ef(Ξ)− Ef(H)| = sup
f∈FTV

|EAhf (Ξ)|. (9)

Then the Georgii–Nguyen–Zessin equation (2) yields

EAhf (Ξ) = E
∫
X

[
hf (Ξ + δx)− hf (Ξ)

]
λ(x |Ξ) α(dx)

+ E
∫
X

[
hf (Ξ− δx)− hf (Ξ)

]
Ξ(dx)

= E
∫
X

[
hf (Ξ + δx)− hf (Ξ)

]
(λ(x |Ξ)− ν(x |Ξ)) α(dx). (10)

By constructing an explicit coupling between two birth-death processes, see [11], one can control the differ-
ence hf (Ξ + δx)− hf (Ξ) in (10), and it is then possible to obtain reasonable bounds on the last expression
in (9), which yields the results of the next section.

4 Main Results
The general result is the following.

Theorem 4.1. Let Ξ ∼ Gibbs(ν) and H ∼ Gibbs(λ) be Gibbs processes. Suppose that H is locally stable.
Then there exists a constant c1(λ) <∞ such that

dTV (L (Ξ),L (H)) ≤ c1(λ)

∫
X
E|ν(x |Ξ)− λ(x |Ξ)|α(dx). (11)
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Details about the constant c1(λ) can be found in [11]. In particular, if H is a Poisson process, then c1(λ) = 1.
For inhibitory pairwise interaction processes (11) can be simplified.

Theorem 4.2. Suppose that Ξ ∼ PIP(β, ϕ1) and H ∼ PIP(β, ϕ2) are inhibitory. Let ν(y) = E(ν(y |Ξ))
denote the intensity of Ξ. Then

dTV (L (Ξ),L (H)) ≤ c1(λ)

∫
X

∫
X
β(x)ν(y)|ϕ1(x, y)− ϕ2(x, y)| α(dx) α(dy). (12)

In general the intensity ν(y) is not known, but for inhibitory pairwise interaction processes one has always
the crude estimate ν(y) ≤ β(y). For stationary processes on Rd there are more elaborate bounds available,
see [13].
A Gibbs process on a subset of Rd is an area interaction process if its conditional intensity is given by

ν(x | ξ) = β̃γ−|B(x,R/2)\⋃y∈ξ B(y,R/2)|,

for some parameters β̃, γ, R > 0 and where B(x,R/2) denotes the open ball around x with radius R/2. In
[1] it is shown that if β̃, γ → 0 in such a way that β̃γ−αD(R/2)D → β (αD denotes the volume of the unit
ball in Rd), the area interaction process converges weakly to a Strauss hard core process, i.e. a pairwise
interaction process PIP(β, ϕ) with ϕ(x, y) = 1{|x− y| ≥ R}. With the help of Theorem 4.1 one can show
the convergence in the total variation norm and furthermore determine the exact rate of convergence, see
[11].
To overcome the somehow restrictive local stability condition we use the following trick. Define

Ak = {ξ ∈ N : sup
y∈X

ξ(B(y, δ/2)) ≤ k}. (13)

Let HAk denote the Gibbs process H conditioned on the event H ∈ Ak, i.e. we require that the H has at most
k points inside any ball with radius δ/2. For non-inhibitory pairwise interaction processes satisfying some
very standard condition from statistical physics, it can be shown that the conditioned process is then locally
stable. Furthermore in [11] it is shown that

dTV (L (Ξ),L (H)) ≤ dTV (L (Ξ),L (HAk)) + P(H ∈ Ak). (14)

Thus one can apply Theorem 4.1 and by letting δ → 0 and or k → ∞ one can make P(H ∈ Ak) arbitrary
small. This procedure allows e.g. the comparison of two Lennard–Jones processes.
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BCa-JaB method as a diagnostic tool for linear regression models
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Abstract
Jackknife-after-bootstrap (JaB) has first been proposed by [5] then used by [6] and [1] to detect influential
observations in linear regression models. This method uses the percentile confidence interval to provide
cut-off values for the measures. In order to improve JaB, we propose using Bias Corrected and accelerated
(BCa) confidence interval introduced by [4]. In this study, the performance of BCa-JaB and conventional
JaB methods are compared for DFFITS, Welsch’s distance, modified Cook’s distance and t-star statistics.
Comparisons are based on both real world examples and simulation study. The results reveal that under
considered scenarios proposed method provides more symmetric threshold values which give more accurate
and reliable results.

Keywords: Bootstrap, BCa confidence interval, influential observation, regression diagnostics, robustness.
AMS subject classifications: 62F40; 62G09; 62J05; 62J20

1 Introduction
Detection and evaluation of influential observations is a critical part of data analysis in linear models. In
this paper, we will work on four of the well known diagnostic measures used to detect influential observa-
tions for linear regression model: Welsch’s distance, modified Cook’s distance, likelihood distance and t-star
(See [2] for more information about the statistics). The common idea in these measures is to identify the
influential observations by comparing the results obtained from two models with and without ith observation.

With the increase in technology, computer intensive methods became very popular in statistics literature.
Jackknife-after-bootstrap (JaB) technique is one of them. It has been developed by [5] and has been used
by [6] and [1] to determine the cut-off values for various diagnostic measures in linear regression models.
In JaB method, estimated cut-off values for the measures are determined from JaB distribution by using
percentile quantiles, say 2.5%th and 97.5%th percentiles. Cut-off points obtained by this way are of the first
order ”accuracy” and are of the first order ”correctness” where accuracy refers to the coverage errors, and
correctness is a measure of the provision for a confidence interval to exact confidence interval. BCa confi-
dence interval has been proposed by [4] to improve the performance of percentile interval. Unlike percentile
cut-offs, BCa cut-offs are obtained to account for bias and skewness. Hence, they do not assume symmetric
distribution. In this study, we propose replacing percentile confidence interval with BCa in JaB method.
We also propose an adjustment on the BCa cut-offs to make them more robust. The performance of con-
ventional and robust BCa-JaB methods are compared on both real world examples and simulated data sets
for the diagnostic measures under consideration. The linear regression model used with influence measures
throughout this study is Y = βX + ε where Y is an n × 1 column vector for response variable, X is an
n × p (p = k + 1) fixed full-rank design matrix, β is an p × 1 vector of unknown parameters including β0

, and ε is an n × 1 error vector. Section 2 includes detailed information about the BCa-JaB methods, and
numerical and simulation results will be discussed in detail in Section 3.

∗Corresponding author, e-mail: ufuk.beyaztas@deu.edu.tr
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2 Method
[5] described the idea behind the JaB method as follows: a sample of size n from z1, z2, . . . , zi−1, zi+1, . . . , zn
has the same distribution as a bootstrap sample from z1, z2, . . . , zn in which none of the bootstrap values
equals zi. As described by [6] the rationale behind this approach is to generate a “null” bootstrap distribu-
tion of θ under the hypothesis that the ith data point is not influential. They propose that since the ith data
point is not present in any of the resamples from which bootstrap distribution is generated, it cannot exert
influence and thus the distribution generated is free from the influence of this point.This method is a very
powerful method to detect unusual cases compared to traditional methods. In order to improve this method,
we propose using BCa confidence interval to determine cut-off values. BCa method demonstrated by [4] is
an automatic algorithm for producing highly accurate confidence limits from a bootstrap distribution ([3]).
Suppose θ is a parameter of interest and θ̂ is the estimator from the original data, θ̂∗ is an estimate of θ̂ from
the bootstrapped data.

Let ẑ0−JaB and âJaB represent the bias correction and acceleration parameters for JaB distribution, re-
spectively. ẑ0−JaB is calculated as follows:

ẑ0−JaB = Φ−1{#{θ̂∗b < θ̂20%trim}
n2B/e

} (1)

where θ̂20%trim is the 20% trimmed mean of n diagnostic statistics calculated from the original data set and
B is the number of bootstrap. By using the jackknife procedure, we set the acceleration parameter as

âJaB =

∑n
i=1(θ(−i)20%trim − θ(−i))3

6{∑n
i=1(θ(−i)20%trim − θ(−i))2}3/2

(2)

where θ(−i)) is the value of θ produced when the ith observation is deleted from the original sample and
θ(−i)20%trim is 20% trimmed mean of all θ(−i)) values. Normally, arithmetic mean is used instead of
trimmed mean in equations (1) and (2). But, since mean is highly sensitive to unusual observations, we
propose a robust version using 20% trimmed mean. Let Ĝ(c)JaB represents the JaB distribution, then the
BCa endpoint for αthquantile is computed as;

θ̂BCa[α]JaB = Ĝ−1
JaBΦ(ẑ0−JaB +

ẑ0−JaB + zα

1− âJaB(ẑ0−JaB + zα)
) (3)

Lower and upper limits are calculated for α/2 and 1−α/2, respectively. Then, these BCa limits are used as
cut-off points for detection of influential observations. The algorithm of BCa-JaB method can be described
briefly as follows;

Step 1. Let θi be the diagnostic statistic that we study. The appropriate model is fitted for original data set,
and the θi for i = 1, 2, . . . , n are calculated.

Step 2. Calculate the jackknife value of a measures of interest.

Step 3. Calculate the acceleration parameter âJaB in equation (2) by using trimmed jackknife value calculated
in Step 2.

Step 4. Construct B resamples with replacement from the original data set.

Step 5. For each data point within these B resamples, get a subset of the samples which do not contain that
data point, so there are B/e resamples obtained for each data point. Calculate about n values of θi,
for each of these resample, so nB/e values of θi are obtained. Collect all nB/e values of θ into a
single vector.
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Step 6. Calculate the bias correction parameter ẑ0−JaB in equation (1) using the vector created in Step 5.

Step 7. Calculate the adjusted quantiles of generated JaB distribution by using bias correction parameter cal-
culated in Step 6. These quantiles are then compared to the original θi i = 1, 2, . . . , n values to flag
the points as influential or not.

The steps 1-7 are repeated M times. Then, the average and standard error for the number of flagged points
for all these M simulations can be calculated. It should be noted that this algorithm runs only once for the
real data.

3 Numerical and simulation results
For real world examples and simulation studies, 3100 resamples were created from the original data set so
that for each data point without corresponding point roughly 1000 resamples were produced. The calcula-
tions were carried out using R 2.15.2 on an Intel Core i7-2670QM 2.20 GHz PC.

As a real world example we used the soil evaporation data set which is available in ”TeachingDemos” R
package to compare the performances of proposed BCa-JaB and conventional JaB methods. The set in-
cludes 46 observations and 10 explanatory variables. For this example, the normality of the resamples is
deformed by points 2 and 33, and BCa-JaB adjusts the cut-off points to the right compared to conventional
JaB. This adjustment is shown in our results in Table 1. Points 2, 31, 32 and 41 are seemed as influential in
influential plot (to save the space, plot is not shown here). It seems that for this data set, BCa-JaB is more
effective for modified Cook’s distance and DFFITS.

Table 1: Regression influence diagnostics for the soil evaporation data, n=46, p=11

Method Welsch’s dist. Modified Cook’s dist. DFFITS t-star
Conventional JaB
Low cut-off -20.901 -4.083 -2.289 -2.793
High cut-off 10.512 2.323 1.302 2.089
Influential points 31 None None 2, 8, 33, 41
BCa-JaB
Low cut-off -16.420 -3.362 -1.885 -2.417

(3.38%) (3.32%) (3.32%) (3.43%)
High cut-off 12.314 2.609 1.463 1.463

(98.20%) (98.16%) (98.16%) (98.22%)
Influential points 2, 31, 32 2, 31, 41 2, 31, 41 2, 31, 41

For the simulation study, we generated data under the regression model Y = 1+2X1+4X2+3X3+2X4+ε.
The modeling scenarios are adapted in such a way that no clear influential data points were deliberately
generated, and a clearly influential data point was inserted into the data set. For the model, X was generated
i.i.d. N(2, 1) variates and ε was generated with one of two error distributions: normal N(0, 0.5625) and
centered log-normal (1.5[expN(0, 0.5625)−exp(1/2)]; skewed). The deliberately inserted influential point
was at (x2 = 10, y = 10). For each statistic, M = 500 simulations with 3100 bootstrap resamples were
performed. The average number of points flagged as influential for simulation is recorded as “Average no.
of points” in the table. For deliberately inserted data point, the detection rate for simulations is recorded
as “% point identified”. The standard deviations are given in brackets. The values in parenthesis below the
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BCa cut-offs are the quantiles adjusted for bias and skewness. Table 2 presents the results under sample size
n = 50.
When no deliberate influential data point is inserted into the original data set the cut-off points for both
methods are almost same under both error distributions. Accordingly, average number of points flagged by
both methods are nearly the same with non significant advantage of BCa-JaB. It might seem awkward to
flag some points influential even though no influential point inserted deliberately. However, even if there
are no deliberately inserted influential points, some influential points may occur randomly. When no points
inserted deliberately, having points flagged may seem confusing and as an error. However, the issue of
flagging points is reasonable in a sense that some point will have the most extreme value of the measure
and the solution would be to put tests on these points (Martin, 2011 by personal contact). With inserted
influential point, the results of both methods are different. The structure of the JaB distribution is distorted
by the deliberately inserted influential data point. Skewness of the inserted influential observation is to the
left and JaB method already adjust the cut-off points to handle this problem. However, BCa method makes
further adjustment to cut-offs to correct both the skewness and bias so that we get more symmetric cut-offs.
It seems that its performance is much significant under log-normal distribution.

4 Conclusion
We proposed a new approach based on robust BCa-JaB method to detect influential observations. Both real
world and simulated data sets support our claim for improvement on conventional JaB method.
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Table 2: Simulation results, n=50, p=5 for all distribution of errors.

Distribution of errors Normal Log-normal

Method Welsch’s

distance

Modified

Cook’s

distance

DFFITS t-star Welsch’s

distance

Modified

Cook’s

distance

DFFITS t-star

Influential point not present
JaB

Low cut-off -5.315 -2.110 -0.703 -2.021 -4.058 -1.597 -0.532 -1.405
High cut-off 5.332 2.114 0.704 2.026 7.159 2.860 0.953 2.850
Average no. of points 2.544 2.510 2.510 2.468 2.270 2.258 2.258 1.864
(SD) (0.908) (0.876) (0.876) (0.835) (0.803) (0.817) (0.817) (0.809)
BCa-JaB

Low cut-off -5.323 -2.113 -0.704 -2.024 -4.036 -1.589 -0.529 -1.412
(2.52%) (2.52%) (2.52%) (2.50%) (2.60%) (2.59%) (2.29%) (2.46%)

High cut-off 5.317 2.107 0.702 2.021 7.175 2.862 0.954 2.799
(97.44%) (97.44%) (97.44%) (97.45%) (97.51%) (97.50%) (97.50%) (97.41%)

Average no. of points 2.582 2.560 2.560 2.520 2.330 2.304 2.304 1.900
(SD) (0.892) (0.880) (0.880) (0.804) (0.840) (0.863) (0.863) (0.838)

Influential point present
JaB

Low cut-off -6.942 -2.693 -0.897 -2.179 -6.232 -2.411 -0.803 -1.875
High cut-off 4.856 1.934 0.644 1.863 5.509 2.198 0.732 2.149
Average no. of points 2.066 2.054 2.054 1.748 1.922 1.920 1.920 1.792
(SD) (0.752) (0.726) (0.726) (0.661) (0.4740) (0.747) (0.747) (0.624)
% point identified (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)
BCa-JaB

Low cut-off -5.678 -2.229 -0.743 -1.923 -4.095 -1.623 -0.541 -1.464
(3.422%) (3.42%) (3.42%) (3.49%) (4.82%) (4.82%) (4.82%) (4.79%)

High cut-off 5.406 2.143 0.7114 2.026 7.456 2.953 0.984 2.806
(98.19%) (98.20%) (98.20%) (98.26%) (98.84%) (98.84%) (98.84%) (98.83%)

Average no. of points 2.136 2.102 2.102 1.720 2.602 2.602 2.602 2.420
(SD) (0.811) (0.777) (0.777) (0.685) (0.860) (0.858) (0.858) (0.872)
% point identified (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)





18TH EUROPEAN YOUNG STATISTICIANS MEETING 201

Adaptive estimation in mixture models with varying mixing
probabilities

Alexey V. Doronin∗

Kyiv National Taras Shevchenko University, Kyiv, Ukraine

Abstract
Semiparametric estimation problems are considered for a model of finite mixture with mixing probabilities
varying from observation to observation. We present estimators based on adaptive estimating equations, and
compare them with estimators of two another types, namely the moment and quantile ones. Performance of
these estimators is compared both analytically and by simulations.
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1 Introduction
We consider a series of N subjects O1;N , ..., ON ;N belonging to M different populations (components of
mixture), N ≥ 1. Let ind(Oj;N ) indicates the unknown true number of component to which the subject
Oj:N belongs. For each subject Oj;N some numerical characteristics ξj;N := ξ(Oj;N ) ∈ R are observed.
So, we obtain a series of samples ξ1;N , ..., ξN ;N from N observations.
We denote by Fm(A) := P [ξ(Oj;N ) ∈ A|ind(Oj;N ) = m], m = 1,M the CDF of ξ(Oj;N ) under the
condition that Oj;N belongs to mth component of a mixture, and by pmj;N := P [ind(Oj;N )] the proba-
bility that Oj;N belongs to mth component of a mixture (concentration of mth component). The set of
concentrations (pmj;N )j=1,N,m=1,M is assumed to be known. Thus, the CDF of ξj;N can be expressed as

P [ξj;N ∈ A] =
M∑
m=1

pmj;NFm(A).

In what follows we assume that the CDF of the first component is parametrized with some Euclidean pa-
rameter t ∈ Θ ⊂ Rd (i.e. F1(A) = F1(A, t)). We denote by ϑ ∈ Θ the true value of parameter. The CDFs
of the rest of the components are assumed to be fully unknown.
Moment, quantile and adaptive estimators for ϑ by the sample ξ1;N , ..., ξN ;N are discussed in Sections 2-4.
Performance of these estimates is assessed via simulations in Section 5.

2 Moment estimators

We denote by ΓN := (〈pk;Npl;N 〉N )k,l=1,M the M -by-M Gramm’s matrix for concentrations pmj;N (symbol
〈·〉N means averaging over index j), by em a vector from RM , which has a unit on the mth place, and the
rest of its elements are zeros.
∗e-mail: al doronin@ukr.net
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In [4] the set of minimax weight coefficients amj;N := (pj;N )T (ΓN )−1em (under condition det ΓN 6= 0) is
introduced, and the weighted empirical CDF

F̂m;N (x) :=
1

N

N∑
j=1

amj;N I{ξj;N≤x}

is considered as an estimate for Fm(x).
In [3] improved weighted empirical CDF F̂+

m;N (x) := min
{

1, supy≤x F̂m;N (y)
}

is introduced.

Consider some measurable function h : R→ Rd.
As an estimate for

∫
h(x)F̂m;N (dx) we consider the weighted moment of h(·)

ĥmN :=

∫
h(x)F̂m;N (dx) =

1

N

N∑
j=1

amj;Nh(ξj;N ). (1)

Unbiasedness, consistency and asymptotic normality for estimator defined in (1) are demonstrated in [4]
under certain conditions.
We define moment estimator ϑ̂simpleN as a solution of moment equation∫

h(x)F̂1;N (dx) =

∫
h(x)F1(dx, ϑ̂simpleN ). (2)

Alternatively, we define improved moment estimator ϑ̂imprN as a solution of equation∫
h(x)F̂+

1;N (dx) =

∫
h(x)F1(dx, ϑ̂imprN ). (3)

Consistency and asymptotic normality for both ϑ̂simpleN and ϑ̂imprN are demonstrated in [4] and in [3].

3 Quantile estimators

3.1 Estimators for quantiles
We denote by Qm(α) the quantile for distribution Fm(·) of level α.
It is proposed in [4] to define an estimator Q̂m;N (α) for a quantile Qm(α) as a value of a function, inversed
to piece-wise linear interpolation of improved CDF F̂+

m;N defined in section 2. Consistency and asymptotic
normality of this estimator are demonstrated in [4].

3.2 Quantile estimator (for Gaussian distribution)

Let F1(x; t) be the CDF of a Gaussian distribution with the true value of a parameter ϑ = (µ, σ)T ∈ R2.
We denote by γ := QN (0,1)(3/4) − QN (0,1)(1/4) the interquartile range of standard Gaussian distribu-

tion (approximately 1.34898), and E :=

(
0 1 0
−1/γ 0 1/γ

)
. In [2] the quantile estimator for Gaussian

component is defined by

ϑ̂quantN := (µ̂quantN , σ̂quantN )T := E · (Q̂1
N (1/4), Q̂1

N (1/2), Q̂1
N (3/4))T . (4)

Theorem 3.1. (Theorem 1 from [2])
Assume that
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(i) supj;N |amj;N | <∞.

(ii) The limits αmk := limN→∞〈pk·;N (am·;N )2〉N , α∗;mk,l := limN→∞〈pk·;Npl·;N (am·;N )2〉N exist, k, l = 1,M .

(iii) Fk(·) are continuous on R, k = 1,M .

(iv) The unbiasedness condition 〈ampk〉 = Ik=m, k = 1,M holds.

(v) Functions Fk(·), k = 1,M are monotone increasing in some neighborhoods I1, ..., Iq of points
QFm(α1), ..., QFm(αq) respectively.

(vi) On I1, ..., Iq the function Fm(·) has a continuous derivative fm(·), and fm(QFm(αi)) 6= 0, i = 1, q.

Then
1.
√
N · (Q̂mN (αi)−QFm(αi))i=1,q

W−→ N (Oq, S), where S = (Sr,s)r,s=1,q is q-by-q matrix with elements

Sr,s =

M∑
k=1

αmk Fk(min{QFm (αr),QFm (αs)})−
M∑

k,l=1

α∗;mk,l Fk(QFm (αr))Fl(Q
Fm (αs))

fm(QFm (αr))fm(QFm (αs))

(here W−→ denotes the weak convergence).
2. Assuming (αi)i=1,q = (1/4, 1/2, 3/4)T , we get

√
N(ϑ̂quantN − ϑ)

W−→ N (O3, ESE
T ).

4 Adaptive estimator (from GEE method)
In this section we present the adaptive estimator, derived from GEE method, introduced in [1].

4.1 GEE estimator

We denote by ĝ1
N (t) the moment estimator for value

∫
g(x; t)F1(dx;ϑ) defined in (1).

The GEE (generalized estimating equation) estimator is considered in [1] as a solution of GEE ĝ1
N (ϑ̂GEEN ) =

Od with some estimating function g(x; t) : X×Θ→ Rd.
Consistency and asymptotic normality of GEE estimator are demonstrated in [1].

4.2 Adaptive estimator
Adaptive estimator in [1] is constructed as a GEE estimator with the estimating function adapted by data to
derive optimal dispersion matrices. For practical needs it is recommended in [1] to consider a vector of some
predefined parametrized functions u(x; t) ∈ RR, and choose the estimating function as a linear combination
of u(x; t) (e.g. B-splines): g(x; t) = B(t) · u(x; t), where B(t) is some d-by-R matrix. Approximate
adaptive estimator is obtained from pilot estimator as one-step Newton type approximate solution of adapted
estimating equation. Any

√
N -consistent estimator such as a moment or a quantile one can be used as the

pilot estimator ϑ̃N . Thus, adaptive estimator takes form ϑ̂adaptN := ϑ̃N − B̂N (ϑ̃N ) · û1;N (ϑ̃N ) where
B̂N (ϑ̃N ) and û1;N (ϑ̃N ) are estimations for the optimal coefficients matrix B∗(ϑ) and

∫
u(x;ϑ)F1(dx;ϑ)

respectively.
Consistency and asymptotic normality of the adaptive estimator defined by (6) are demonstrated in [1].
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4.3 Lower bound for dispersion matrix of adaptive estimator
Denote:

E0 := (Id×d,Od×1),

E+ :=

(
I(d+1)×(d+1)

O(M−1)×(d+1)

)
,

V := −
∫
u(x;ϑ)(f∗(x))Tµ(dx)E+,

f∗(x) := (
∂

∂ϑ1
f1(x;ϑ), ...,

∂

∂ϑd
f1(x;ϑ), f1(x), ..., fM (x))T ,

αi := lim
N→∞

〈(a1
·;N )2pi·;N 〉N ,

α∗i,k := lim
N→∞

〈(a1
·;N )2pi·;Np

k
·;N 〉N ,

r(x) :=

M∑
i=1

αifi(x),

Z1 :=

M∑
m,l=2

α∗m,l

∫
u(x;ϑ)fm(x)µ(dx)

∫
u(x;ϑ)T fl(x)µ(dx),

Z2 :=

∫
r(x)u(x;ϑ)u(x;ϑ)Tµ(dx),

Z := Z2 − Z1.

It is shown in [1] that the lower bound for dispersion matrix for an adaptive estimator of form g(x; t) =
B(t) · u(x; t) is

S∗ := S(B∗) := E0(VTZ−1V)−1ET0 . (5)

This lower bound is achieved on the matrix B∗(ϑ) := E0(VTZ−1V)−1VTZ−1 .

4.4 Empirical adaptive estimator
Denote

α∗m,l;N := 〈(a1
·;N )2pi·;Np

k
·;N 〉N ,

Ẑ1;N (t) :=

M∑
m,l=2

α∗m,l;N û
m
N (t)ûlN (t)T ,

Ẑ2;N (t) :=
1

N

N∑
j=1

(a1
j;N )2u(ξj;N ; t)u(ξj;N ; t)T ,

ẐN (t) := Ẑ2;N (t)− Ẑ1;N (t).

The estimate for B∗(t) as a function of t is defined in [1] as

B̂N (t) := E0

[
V(t)T ẐN (t)−1V(t)

]−1

V(t)T ẐN (t)−1.

For some
√
N -consistent pilot estimator ϑ̃N the adaptive estimate takes the form

ϑ̂adaptN := ϑ̃N − B̂N (ϑ̃N ) · û1
N (ϑ̃N ). (6)

Consistency and asymptotic normality of ϑ̂adaptN defined in (6) are demonstrated in [1].
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Theorem 4.1. (Theorem 4 from [1]) Assume that

(i) u(x; t) is continuously differentiable by t for almost all x (mod µ).

(ii) For some open ball B, ϑ ∈ B ⊂ Θ fulfills
∫

sup
t∈B

∥∥ ∂
∂tu(x; t)

∥∥2
Fi(dx) <∞, i = 1,M .

(iii)
∫
‖u(x; t)‖2 Fi(dx) <∞ for all i = 1,M .

(iv) det Γ 6= 0.

(v) Limits αi and α∗i,m exist.

(vi) ϑ̃N is a consistent estimate for ϑ.

(vii) V is a matrix of full rank.

(viii) ϑ̃N is a
√
N -consistent estimate of ϑ.

Then
√
N(ϑ̂adaptN − ϑ)

W−→ N (Od, S∗) with S∗ defined in (5).

5 Numerical examples
We assessed performance of the following estimators by simulations.

A. Simple estimate ϑ̂simpleN defined by (2) with h(x) := (x, x2)T .

B. Improved estimate ϑ̂imprN defined by (3) with h(x) := (x, x2)T -

C. Quantile estimate ϑ̂quantN defined by (4).

D. Adaptive estimate ϑ̂adaptN defined by (6) with ϑ̂imprN as a pilot.

E. Adaptive estimate ϑ̂adaptN defined by (6) with ϑ̂quantN as a pilot.

Experiments were conducted on two types of two-component mixture from Gaussian distributions with the
following parameters:

Experiment 1. Component 1: µ = −3, σ = 1; component 2: µ = 3, σ = 2.

Experiment 2. Component 1: µ = 0, σ = 2; component 2: µ = 1, σ = 2.

The estimates were calculated for different sizes of a sample (value N ): 50, 100, 250, 500, 750, 1000, 2000,
5000. The dispersion of constructed estimates was calculated from 1000 samples (for each value of N ). The
set of concentration was uniform: p1

j;N := j
N , p2

j;N := 1− p1
j;N , j = 1, N .

For adaptive estimate as a vector u(x; t) is taken a vector from 8 functions. First 5 of them are cubic B-
splines with support (t1 − 4t2, t1 + 4t2) and uniform subdivision of this support into 8 intervals. The last 3
functions: 1, (x− t1)/t2, (x− t1)2/t22.

The results of simulation are presented in Figure 1.
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Figure 1: The variance of estimates multiplied by the number of observations (N ): � – simple estimates, � – improved estimates,
4 – quantile estimates, • and ◦ – adaptive estimates with improved and quantile as pilot ones respectively. Asymptotic values are
presented by dotted lines.

So, in our experiments the adaptive estimators outperformed the other ones in almost all cases for sample
sizes larger then 100.
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Drift parameter estimation in models with fractional Brownian
motion by discrete observations

Kostiantyn Ralchenko∗

Taras Shevchenko National University of Kyiv

Abstract
We study a problem of estimating of unknown drift parameter in stochastic differential equation driven by
fractional Brownian motion. Using Girsanov theorem, we can find the form of maximum likelihood ratio,
and, moreover, represent it via the observable process. The form of this representation is rather complicated.
In the simplest case it can be simplified, we can discretize it and establish the convergence a.s. of the
discretized version of maximum likelihood ratio to the true value of parameter in the framework of “high
frequency data”.

Keywords: fractional Brownian motion, stochastic differential equation, parameter estimation, strong con-
sistency, discretization.
AMS subject classifications: Primary: 60G22, 62F10. Secondary: 60H10, 62F12.

1 The explicit form of the likelihood ratio

Let BH =
{
BHt , t ≥ 0

}
be a fractional Brownian motion with Hurst index H ∈ (1/2, 1), defined on the

probability space (Ω,F ,P). Denote by (Ft)t≥0 — the filtration generated by BH . We study the problem of
estimating of an unknown drift parameter from [1]. Consider the stochastic differential equation driven by
fractional Brownian motion BH :

dXt = θa(t,Xt)dt+ b(t,Xt)dB
H
t , 0 ≤ t ≤ T, T > 0,

X
∣∣
t=0

= X0 ∈ R.
(1)

Here θ ∈ R is the unknown parameter to be estimated.
Suppose that the following assumptions hold:

(I) there exist positive constants C1, C2 such that for all t ∈ [0, T ], x, y ∈ R

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C1|x− y|,
|a(t, x)|+ |b(t, x)| ≤ C2(1 + |x|);

(II) there exist constants C3 > 0 and ρ ∈
(

1
H − 1, 1

)
such that for all t ∈ [0, T ], x, y ∈ R

|b′x(t, x)− b′y(t, y)| ≤ C3|x− y|ρ;

(III) there exist constants C4 > 0 and γ ∈ (1−H, 1) such that for all t, s ∈ [0, T ], x ∈ R

|b(t, x)− b(s, x)|+ |b′x(t, x)− b′x(s, x)| ≤ C4|t− s|γ .
∗e-mail: k.ralchenko@gmail.com
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According to [3, Theorem 2.1], under the conditions (I)–(III) there exists a unique solutionX of the stochas-
tic equation (1).
In addition, suppose that the following conditions hold:

(IV) b(t, x) 6= 0;

(V) a ∈ C([0,∞)× R).

Denote α = H − 1
2 , α̃ = (1− 2α)−1, CH =

(
Γ(2−2α)

2HΓ(1−α)3Γ(α+1)

) 1
2

, lH(t, s) = CHs
−α(t− s)−αI{0<s<t},

ψ(t, x) = a(t,x)
b(t,x) , ϕ(t) = ψ(t,Xt), I(t) =

∫ t
0
lH(t, s)ϕ(s)ds. Under the conditions (I), (III), (IV), (V)

ϕ(t), t ∈ [0, T ] is a continuous process with probability 1. Hence, it is Lebesgue integrable and for each
t ∈ [0, T ] there exists an integral

∫ t
0
lH(t, s)ϕ(s)ds.

Consider the new process B̂Ht := BHt + θ
∫ t

0
ϕ(s)ds. Suppose that the following assumptions hold.

(VI) there exist a function δ that for all t ∈ [0, T ] a. s. belongs to L1[0, t] and satisfy the equation

θ

∫ t

0

lH(t, s)ϕ(s)ds = (α̃)−1/2

∫ t

0

δsds;

(VII) E
∫ t

0
s2αδ2

sds <∞, t ∈ [0, T ];

(VIII) E exp
{
Lt − 1

2 〈L〉t
}

= 1, where Lt =
∫ t

0
sαδsdB̂s, and B̂ is Wiener process with respect to the

probability measure P0(t) corresponding to the zero drift such that∫ t

0

lH(t, s) dB̂Hs = α̃−1/2

∫ t

0

s−α dB̂s.

(The existence of this Wiener process follows from the representation of fractional Brownian motion
via Wiener process on a finite interval introduced in [2].)

Then the likelihood ratio dPθ(t)
dP0(t) for the probability measure Pθ(t) corresponding to our model and the prob-

ability measure P0(t) corresponding to the model with zero drift is equal to

dPθ(t)

dP0(t)
= exp

{
Lt −

1

2
〈L〉t

}
. (2)

Moreover Lt is a square-integrable martingale.
Note that the likelihood in (2) is not the likelihood of the observed process, but the likelihood of the unob-
served driving noise. The following theorem allow us to present the likelihood ratio (2) as a function of the
observed process Xt.
Assume that

(IX) a, b, ψ ∈ C1,1([0,∞)× R).

Theorem 1.1. Suppose that the assumptions (I)–(IV), (VI), (IX) hold. Then

Lt = CHB(1− α, 1− α)θψ(0, 0)Jt

+ θ

∫ t

0

[
α̃s2α−1

∫ s

0

lH(s, u) (ψ′t(u,Xu) + θψ′x(u,Xu)a(u,Xu)(s− u)) du

−
∫ s

0

∫ u

0

(
α̃αs2αu−1lH(s, u)ψ′t(v,Xv)
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+ θψ′x(v,Xv)a(v,Xv)CH
(
α̃αs2αu−1−α(s− u)−α + u2α−2v1−α(u− v)−α

))
dvdu

+ CH

∫ s

0

u2α−2

∫ u

0

v1−α(u− v)−αψ′x(v,Xv)dXvdu

+ α̃CHs
2α−1

∫ s

0

u1−α(s− u)−αψ′x(u,Xu)dXu

]
dJs,

where Jt =
∫ t

0
lH(t, s)b−1(s,Xs)dXs.

Example 1.1. Let a(t, x) = b(t, x). Then ψ(t, x) = 1, ψ′t(t, x) = ψ′x(t, x) = 0. Therefore

Lt = CHB(1− α, 1− α)θJt = B(1− α, 1− α)CHθ

∫ t

0

lH(t, s)a−1(s,Xs)dXs

and the maximum likelihood estimator for θ is

θ̂t =

∫ t
0
s−α(t− s)−αa−1(s,Xs)dXs

B(1− α, 1− α)t1−2α
.

2 Strong consistency of estimators by discrete observations
Let Xt be a solution of the equation

dXt = θa(Xt)dt+ b(Xt)dB
H
t , (3)

where the coefficients a and b satisfy the following condition: there exist constants µ ∈ (0, 1], K > 0,
L > 0, M > 0 and for every N > 0 there exists RN > 0 such that the following assumptions hold:

(A) |a(x)|+ |b(x)| ≤ K for all x, y ∈ R,

(B) |a(x)− a(y)|+ |b(x)− b(y)| ≤ L|x− y| for all x, y ∈ R,

(C) |b′(x)− b′(y)| ≤ RN |x− y|µ for all |x| ≤ N , |y| ≤ N ,

(D) |a(x)| ≥M, |b(x)| ≥M for all x ∈ R.

Suppose that we observe the values X k
2n

, k = 0, 1, . . . , 22n.

Theorem 2.1. Let

θ̂(1)
n =

∑22n

k=1

(
k
2n

)−α (
2n − k

2n

)−α
b−1

(
X k−1

2n

)(
X k

2n
−X k−1

2n

)
∑22n

k=1

(
k
2n

)−α (
2n − k

2n

)−α
b−1

(
X k−1

2n

)
a
(
X k−1

2n

)
1

2n

.

Then with probability one θ̂(1)
n → θ, n→∞.

Remark 2.1. When a(x) = b(x) (for example, in the linear model) the estimator θ̂(1)
n is a discretized version

of the maximum-likelihood estimator.

Theorem 2.2. Let

θ̂(2)
n =

∑22n

k=1 b
−1
(
X k−1

2n

)(
X k

2n
−X k−1

2n

)
1

2n

∑22n

k=1 b
−1
(
X k−1

2n

)
a
(
X k−1

2n

) .

Then with probability one θ̂(2)
n → θ, n→∞.
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Optimal designs for discriminating between functional linear models

Verity Fisher∗ and David Woods

University of Southampton, UK

Abstract
Improvements in online measuring and monitoring have facilitated an increase in the number of observa-
tions that can be taken on each experimental unit in industrial and scientific experiments. Examples are from
diverse areas such as biometry, chemistry, psychology and climatology. It can often be assumed that the
application of a treatment to each unit generates a smooth functional response. A semi-parametric model
is often used for the response when we are interested in how changes to the levels of the controllable fac-
tors influence these functions. Relatively simple polynomial models are chosen to describe the treatement
effects. In this paper, we present methods for the design of experiments with functional data when the
aim is to discriminate between linear models for the treatment effect. We develop an extension of the T -
optimality criterion to functional data for discriminating between two competing models. The methodology
is motivated by an example from Tribology and assessed via simulation studies to calculate the power of the
resulting analyses.

Keywords: Functional data, model discrimination, T -optimality
AMS subject classifications: 62K05

1 Introduction
In many industrial and scientific experiments, each run can now produce a vast amount of data, collected
using automatic monitoring and measurement systems. Often, it can be assumed that these data are generated
by a smooth underlying function [5] and that the measurement processes are precise enough that the function
can be accurately reconstructed, essentially without error. Then, the data can be assumed to be functional,
with the output from each run of the experiment being a smooth function, typically not following a simple
parametric form. Further, these functions may vary between runs of the experiment, potentially as the result
of both aleatoric (i.e. random) variability and systematic variability resulting from application of different
treatments, or combinations of values of the controllable factors. As with scalar regression, linear models
may be used to partition this variability and assess how changes in treatment influence the shape of the
functions.
This work is motivated by wear testing in Tribology, and in particular an experiment to study the wear in
a pin and disc assembly for a given lubricant performed by the National Centre for Advanced Tribology,
Southampton. The effects of six factors required investigation using a 20 run experiment, with each run
defined by a different treatment. For each run, data on a number of functional responses were collected using
automatic sensors, including the total wear of the pin and disc measured by a linear variable displacement
transformer. The aim of the experiment was to understand which of the six factors had a substantive impact
on each functional response; that is, to choose between contending functional linear models.
Here, we propose extending the criterion of T -optimality [2] to find designs that provide the most infor-
mation for discriminating between two competing models. In Section 2, we introduce the functional linear
∗Corresponding author, e-mail: V.Fisher@Southampton.ac.uk
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model and, in Section 3, we go on to discuss T -optimal design that enables “best” discrimination between
two competing functional linear models. In Section 4, we find a T -optimal design for a simple functional
data example and perform a simulation study to assess the resulting sensitivity or power to detect the correct
model.

2 Functional linear models
We assume the following linear model for the functional responses from an N -run experiment:

M1 : Y (t) = X1β1(t) + ε(t) ,

with t ∈ T ⊂ R,Y (t) = (Y1(t), . . . , YN (t))T, β1(t) = (β11(t), . . . , β1p1(t))T, ε(t) = (ε1(t), . . . , εN (t))T

and X anN×p1 model matrix. The error functions εj(t) are realisations from a Gaussian stochastic process
with mean zero and covariance function γ(t, u); for i 6= j, εi(t) and εj(u) are assumed independent. That
is, the observed functions Yj(t) are assumed to be linear combinations of unknown functions β1k(t) with
the addition of independent error functions εj(t) (j = 1, . . . , N ; k = 1, . . . , p1).
The aim of the experiment is to discriminate between model M1 and a rival model

M2 : Y (t) = X2β2(t) + η(t) ,

with X2 an alternative N × p2 model matrix with corresponding vector of unknown functions β2(t) =
(β21(t), . . . , β2p2(t))T and η(t) defined as ε(t). To discriminate between these two models, tests using the
following quantity have been suggested [3]:

T =

∫
t

[
Ŷ2(t)− Ŷ1(t)

]T [
Ŷ2(t)− Ŷ1(t)

]
dt , (1)

where Ŷi = (Ŷi1(t), . . . , ŶiN (t))T are the fitted functions from model Mi (see Section 3). When model
M1 is nested in model M2, under H0 : M1 is correct, the distribution of the test statistic F =

{
(N −

p2)T
}
/
{

(p2 − p1)rss2

}
can be approximated by an F -distribution with adjusted degrees of freedom [6].

Here, rss2 is the integrated residual sum of squares for model M2 and the adjustment to the degrees of
freedom reflects the covariance function γ.

3 T-optimality for functional linear models
We find approximate optimal designs in f factors which are represented by a discrete probability measure ξ
on the design region X = [−1, 1]f :

ξ =

{
x1 . . . xn
w1 . . . wn

}
, (2)

where xj = (xj1, . . . , xjf )T ∈ X are support points with associated weights 0 < wj ≤ 1;
∑n
j=1 wj = 1.

Using data collected from design (2), we obtain fitted functions from model M1 as

Ŷ1(t) = X1

(
XT

1 WX1

)−1
XT

1 WY (t) = HY (t) .

Here W = diag(w1, . . . , wn) and Xi is now defined for the n support points. Using (1), if we expect data
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from M2 where E[Y2(t)] = X2β2(t), a T -optimal design ξ? maximizes

Φ(ξ) =

∫
t

[
E[Y2(t)]− Ŷ1(t)

]T
W
[
E[Y2(t)]− Ŷ1(t)

]
dt

=

∫
t

[X2β2(t)−HX2β2(t)]
T

W [X2β2(t)−HX2β2(t)] dt

=

∫
t

βT
2 (t)XT

2 [I−H]
T

W [I−H] X2β2(t) dt . (3)

Lemma 3.1. Assume M1 is nested within M2, so p1 < p2, X2 = [X1 : X21] and βT
2 (t) = [βT

1 (t),βT
21(t)]

with X21 an n× (p2 − p1) model matrix and β21 an (p2 − p1) vector of unknown functions. Then objective
function (3) is given by

Φ(ξ) =

∫
t

βT
21(t)XT

21 (I−H)
T

W (I−H) X21β21(t) dt ,

and hence does not depend on the parameter vector β1(t) which is common to both M1 and M2.

Proof. The proof is analogous to that for the scalar regression case [1].

Theorem 3.1. Assume M1 is nested in M2, as in Lemma 1, and p2 = p1 + 1; that is, models M1 and M2
differ by only one term. Then the T -optimal design does not depend on the unknown function β21(t).

Proof. If p2 − p1 = 1, X21 is a n× 1 vector and β21(t) is a single function β21(t). From Lemma 1,

Φ(ξ) =

∫
t

β2
21(t)XT

21 (I−H)
T

W (I−H) X21 dt

= XT
21 (I−H)

T
W (I−H) X21

∫
t

β2
21(t) dt

∝ XT
21 (I−H)

T
W (I−H) X21 , (4)

where the constant of proportionality does not depend on ξ. Therefore, the T -optimal design that max-
imises (4) does not depend on the function β21(t).

Corollary 3.1. When M1 is nested in M2 and p2 = p1 + 1, it follows directly from (4) that the same design
ξ? is T -optimal for both the functional linear model and the scalar linear model.

4 Example and simulation study
We construct a T -optimal design to compare the functional linear models

Y (t) = β10(t) + β11(t)x+ ε(t) , (5)

and
Y (t) = β20(t) + β21(t)x+ β22(t)x2 + η(t) . (6)

That is, we find an optimal design to test if (5) is appropriate given data from (6). As the models differ by
only one term, from Theorem 1, ξ? will not depend on any of the unknown functions. Maximising (4) using
the Nelder-Mead algorithm [4], we find the T -optimal design

ξ? =

{
−1 0 1
0.25 0.5 0.25

}
, (7)
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Figure 1: Power calculated from 1000 simulations using the functional T -optimal design for nine combina-
tions of α20 and α21 values with 0 ≤ α22 ≤ 2, and number of runs N = 12 (−), N = 24 (−−) and N = 72
(· · · ).

which, from the corollary, is also T -optimal for comparing first- and second-order scalar regression models.
To assess the power for rejecting H0 : “model (5) is correct”, we perform a simulation study using an exact
T -optimal design with N runs obtained by rounding (7). Data is generated from model (6) assuming:

• the functions Yj(t) are observed at points t1, . . . , tm ∈ [−1, 1], j = 1, . . . , N ;

• β2k(t) = αk0 + αk1t+ αk2t
2, k = 0, 1, 2;

• Cov (εg(tu), εh(tv)) = σ2
aρ
|u−v| + σ2

b for g = h and 0 < ρ < 1, and 0 otherwise.

For each of S = 1000 generated data sets (with σ2
a = 0.1, σ2

b = 2, ρ = 0.75), we approximate (1) as

T ≈
m∑
j=1

[
Ŷ2(tj)− Ŷ1(tj)

]T [
Ŷ2(tj)− Ŷ1(tj)

]
,

calculate F = (N − 3)T/rss2, where rss2 is the residual sum of squares from model (6), and compare F
to the appropriate F -distribution [6]. We approximate the power as the proportion of simulations for which
H0 is rejected.
Figure 1 displays the results of this study. As the number, N , of design points increases, the power increases
for all values of the other parameters considered, as expected. Further, (i) the power increases with the value
of α22 for all other parameters; (ii) the larger the value of α20, the higher the power over the whole range
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for α22; and (iii) fixing α20 and increasing α21 (across rows in Figure 1) has little or no effect on the power.
These observations can be explained by the form of the parameter function β22(t) = α20 + α21t + α22t

2

for −1 ≤ t ≤ 1. The magnitude of this function determines the difference between models (5) and (6).
Increasing the value of either α20 or α22 clearly increases β22(t) for all t ∈ [−1, 1], as t2 ≥ 0. However,
the linear parameter α21 does not have a constant impact across t, and hence the value of this parameter
has little overall effect on the size of β22(t). For larger α20, there is a smaller difference in power between
the different numbers of runs due to the more straightforward discrimination problem. Overall, for N = 72
runs and an appreciable difference between models (for example, α20 > 1), the power to reject model (5) is
greater than 90%.

5 Conclusions and future work
We have demonstrated the application of a model discrimination criterion for design selection with functional
data and presented a series of results on the properties of the resulting designs. In particular, by establishing
the equivalence of the functional and scalar linear model design problems for nested models differing by one
term, we have made available well-known methods of T -optimality for a broader class of problems.
The near-ubiquity of functional data in many areas of science, engineering and industry encourages the
further development of results for functional linear models. Possibilities for future work include optimality
criteria for different experimental aims, and understanding the role of the reconstruction of functional data
from discrete observations in the selection of optimal designs.
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Abstract
Scores arising from questionnaires often follow asymmetric distributions, on a fixed range. This can be due
to scores clustering at one end of the scale or selective reporting. Sometimes, the scores are further sub-
jected to sample selection, which is a class of missing data problem, resulting in partial observability. Thus,
methods based on complete cases for skew data are inadequate for the analysis of such data and a general
sample selection model is required. Heckman proposed a full maximum likelihood estimation method un-
der the normality assumption for sample selection problems, and parametric and non-parametric extensions
have been proposed. We generalize Heckman [5,6] to allow for underlying skew-normal distribution. Finite
sample performance of the maximum likelihood estimator of the model is studied via Monte Carlo simu-
lation. The model parameters are more precisely estimated under the new model, even in the presence of
moderate to extreme skewness, than the Heckman selection models. Application to data from a study of
neck injuries where the responses are substantially skew successfully discriminates between selection and
inherent skewness.

Keywords: Generalized Sample selection, Missing data, Closed Skew-normal distribution.
AMS subject classifications: 62D99

1 Introduction
Scores arising from instruments designed to assess quality of life (QoL) (e.g. screening questionnaires) often
follow asymmetric distributions due to skewness inherent in Likert-scale type instruments. In addition, the
realized samples from the underlying discrete process are further subjected to selective reporting (e.g. the
selection of maximum of correlated observations) and missing data, with the scores reflecting a selected
population. Consequently, there is need for a general model for sample selection with inherent skewness.
A selection model was introduced by Heckman (see [4]). He proposed a full maximum likelihood estimation
under the assumption of normality. His method was criticized on the ground of its sensitivity to normality
assumption prompting him to develop the two-step estimator (see [5]). Sample selection models arise in
practice as a result of the partial observability of the outcome of interest in a study. The data are missing not
at random (MNAR) because the observed data do not represent a random sample from the population, even
after controlling for covariates.
The two most common deviations from normality are heavier tails and skewness. In dealing with heavier
tails in sample selection, [6] derived a model using links between hidden truncation and sample selection but
with an underlying bivariate-t error distribution. They noted that a more appealing flexible parametric model
is necessary that can accommodate heavy tails and skewness. Other researchers (e.g. [7]) noted that the
effects of asymmetry on the normal theory methods are generally more serious than those of the nonnormal
peakedness. We therefore propose the use of a skew-normal distribution for modeling asymmetry in sample
selection framework.
∗Corresponding author, e-mail: E.O.Ogundimu@warwick.ac.uk
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A continuous random variable Z is said to have a standard skew-normal distribution with parameter λ ∈ R
if its density is

f(z;λ) = 2φ(z)Φ(λz), z ∈ R, (1)

where φ and Φ denote the standard normal PDF (probability density function) and corresponding CDF
(cumulative distribution function) respectively. The parameter λ is called the shape parameter because it
regulates the shape of the density function.

2 Classical and general sample selection models
In this section, we review the classical selection normal model (SNM) and introduce a more general sample
selection model with an underlying skew-normal error distribution.

2.1 Selection normal model (SNM)
Let Y ?i be the outcome variable of interest, assumed linearly related to covariates xi through the standard
multiple regression

Y ?i = β′xi + σε1i, i = 1, . . . , N.

Suppose the main model is supplemented by a selection (missingness) equation

S?i = γ′xi + ε2i, i = 1, . . . , N

where β and γ are unknown parameters and xi are fixed observed characteristics not subject to missingness,
the variance of S?i is fixed as 1 because the variance is not identifiable from sign alone. Selection is modeled
by observing Y ?i only when S?i > 0, i.e. we observe Si = I(S?i > 0) and Yi = Y ?i Si for n =

∑N
i=1 Si of

N individuals. Thus an observation has the conditional density

f(y|x, S? > 0) =
f(y, S? > 0|x)

P (S? > 0|x)
=
f(y|x)P (S? > 0|y, x)

P (S? > 0|x)
. (2)

Equation (2) is the basis of the unification of selection problems as skew distributions given by [1]. The
quantity f(y|x) is a proper PDF, with a skewing function P (S? > 0|y, x), and a normalizing function
P (S? > 0|x). It is straightforward to show that under the additional assumption

(
ε1i

ε2i

)
∼ N2

{(
0
0

)
,

(
1 ρ
ρ 1

)}
;

f(y|x, S = 1; Θ) =

1
σφ
(
y−β′x
σ

)
Φ

(
γ′x+ρ

(
y−β′x
σ

)
√

1−ρ2

)
Φ(γ′x)

, (3)

(see [2]), where Θ = (β, σ, γ, ρ). The parameter ρ ∈ [-1,1] determines the correlation of Y ?i and S?i , and
hence the nature and severity of the selection process. The complete density of a sample selection model
has a continuous component (the conditional density given by (3)), and a discrete component given by
P (S = 1|x). The marginal distribution of the selection equation determines the model to be fitted to the
discrete process. In [2] and [4], a probit model P (S = s) = {Φ(γ′x)}s{1− Φ(γ′x)}1−s was used.
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2.2 Selection Skew-normal model (SSNM)
Suppose we relax the assumption of bivariate normality given in section 2.1 such that the underlying error
distribution is bivariate skew-normal. That is,(

ε1i

ε2i

)
∼ SN2

{(
0
0

)
,

(
1 ρ
ρ 1

)
,

(
λ
0

)}
,

where λ is the skewness parameters for Y ?i . Then f(y|x, S = 1; Ξ) (where Ξ = β, σ, γ, ρ, λ) is still defined
as equation (2). The joint distribution of the outcomes and the selection process can be written in a closed
skew-normal (CSN) distribution form (see [3] for details) as(

Y ?

S?

)
∼ CSN2,1

{
µ = (β′x, γ′x),Σ =

(
σ2 ρσ
ρσ 1

)
, D = (λ/σ, 0), ν = 0,∆ = 1

}
.

Using the conditional and marginal distribution properties of the CSN distribution, we have

f(y|x, S = 1; Ξ) =

2
σφ
(
y−β′x
σ

)
Φ
(
λ(y−β′x)

σ

)
Φ
(
γ′x+ρ

(
y−β′x
σ

)
√

1−ρ2

)
ΦSN

(
γ′x; 0, 1, −λρ√

1+λ2−λ2ρ2

) , (4)

which is the continuous component of the SSNM log-likelihood function. The complete SSNM log-likelihood
function is given by

l(Ξ) =

n∑
i=1

Si

(
ln f(yi|xi, Si = 1)

)
+

n∑
i=1

Si

(
ln ΦSN (γ′xi; 0, 1, λ?)

)
+

+

n∑
i=1

(1− Si) ln ΦSN (−γ′x; 0, 1,−λ?), (5)

where λ? = −λρ/
√

1 + λ2 − λ2ρ2 and f(y|x, S = 1) by (4).

3 Simulation and Data example
In the section, simulation is used to study the finite samples properties of the MLEs for the SSNM and SNM
models. The models are applied to the Neck disability index (NDI) scores.

3.1 Monte Carlo Simulation
We set the outcome and selection equations as Y ?i = 0.5 + 1.5xi + ε1i and S?i = 1 + xi + 1.5wi + ε2i

respectively, where i = 1, . . . , N = 1000. Thus, β′ = (0.5, 1.5), and γ′=(1, 1, 1.5). The covariates, xi
and wi

iid∼ N(0, 1), and are independent of ε1i and ε2i which are generated from bivariate skew-normal
distribution with λ = 0 and 1 (note that the skewness parameter for the second equation is set to zero in both
cases). The covariance matrix has σ = 1 & ρ = 0.5.
Table 1 shows that the SSNM model outperforms the SNM model for the skewness parameters considered,
although the SNM model has a negligible advantage when λ = 0 with smaller bias in the intercept of
the outcome equation. The SSNM gave consistently smaller bias as compared to the SNM model for the
selection equation parts of the models when λ = 0 and 1. Since, the variance σ describes the variability of
the probability distribution of the outcomes Yi, and the bias in the estimation of the intercept and σ is less
in the SSNM model, correct prediction intervals of new observations will be obtained under the model. The
SNM model shows less variability in parameters estimation.
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λ = 0 λ = 1.0
Bias Variance Bias Variance

SSNM SNM SSNM SNM SSNM SNM SSNM SNM
β0 16 -1 108 24 445 5620 341 14
β1 -3 -3 19 19 4 10 12 12
γ0 61 67 74 50 401 3516 266 82
γ1 40 52 60 59 108 533 72 70
γ2 80 98 94 92 201 835 134 122
σ 28 -9 17 9 -110 -1697 66 5
ρ -7 -6 84 84 -72 -636 132 114
λ -27 - 175 - -501 - 1446 -

Table 1: Simulation results (in 1/10,000)

3.2 Data Application
We examine a longitudinal data set on neck injury which was collected using the NDI questionnaire, where
two treatments are compared (Physiotherapy vs. Usual advice). The self-completed questionnaire assess
pain-related activity restrictions in 10 areas including personal care, lifting, sleeping, driving, concentration,
reading and work and results in a score between 0 and 50. The data were collected using questionnaires
at regular intervals over a follow-up period at 4, 8 and 12 months after patient’s emergency department
attendance. We first identify predictors of dropout at each measurement occasion using probit regression.
At month 8, age and sex of the patients are good predictors of missingness. We restricted attention to this
measurement occasion to illustrate the new model.
A preliminary analysis shows that the effect of sex is not significant in the outcome equation of the models
and it was removed.

SSNM SNM
Estimate S.E. p-value Estimate S.E p-value

Selection Equation

int 0.208 0.177 0.239 0.835 0.100 0.000
age 0.021 0.005 0.000 0.024 0.006 0.000
sex(f) 0.309 0.126 0.014 0.335 0.129 0.009

Outcome Equation

int -3.769 0.802 0.000 0.799 0.621 0.198
age 0.074 0.025 0.003 0.086 0.023 0.000
scores at Month 4 0.678 0.035 0.000 0.687 0.035 0.000
treatment(physio) 0.766 0.532 0.150 0.887 0.538 0.099
σ 7.723 0.563 0.000 6.166 0.292 0.000
ρ 0.758 0.174 0.000 0.802 0.072 0.000
λ 1.537 0.450 0.001 - - -

Table 2: Fit of selection skew-normal model (SSNM) and Selection-normal model (SNM) models to the
NDI scores at 8 months.
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Table 2 shows the results of fitting the SSNM and the SNM models to the NDI scores at month 8. As observed
in the simulation study, the coefficients in the selection equations for the SNM model are consistently larger
than the SSNM model. In particular, the estimate of the skewness parameter (λ = 1.537) is statistically
significant in the SSNM model. This implies that neglecting the influence of λ in the model, although it
leads to the same qualitative conclusions for the covariate effects in the outcome equation will lead to wrong
predictive power of the model. In addition, the SSNM model has a better fit (log-likelihood = -1452.67) to
the NDI data than the SNM model (log-likelihood =-1455.03) at the cost of 1 degree of freedom.
In conclusion the SSNM has good estimates of the intercept both in the selection and outcome equations
and hence will give better predictions even when the underlying process is bivariate normal. The model
is well identified in the sense that for any Θ1 6= Θ2, f(y,Θ1) 6= f(y,Θ2), where Θ1 and Θ2 are model
parameters. Further, the observed information matrix is non-singular, although there is stationarity of the
profile likelihood for λ at λ = 0. Further extension to bivariate skew-t distribution may be able to better
handle heavy tails and skewness simultaneously, and it is currently being investigated.
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The Netherlands Botond Szabó Eindhoven University of Technology b.szabo@tue.nl

Poland
Piotr Szulc Institute of Mathematics and

Computer Science, Wroclaw
University of Technology

piotr.a.szulc@pwr.wroc.pl

Portugal
B.G. Manjunath Department of Statistics and

Applications, Faculty of Sciences,
Lisbon University

bgmanjunath@gmail.com

Laetitia Da Costa
Teixeira

Faculty of Sciences and Institute of
Biomedical Sciences Abel Salazar,
University of Porto

laetitiateixeir@gmail.com



18TH EUROPEAN YOUNG STATISTICIANS MEETING 224

COUNTRY PARTICIPANT AFFILIATION E-MAIL ADDRESS

Romania
Mircea Dragulin Faculty of Mathematics and

Informatics, University Bucharest
mircea.mate@yahoo.com

Russia
Ekaterina Krymova Institute for Information

Transmission Problems, Moscow
ekkrym@gmail.com.

Slovakia
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