
Numerical Algorithms in Control

Z. Drmač

Abstract

Control theory poses interesting and challenging problems to numerical math-
ematics, in particular to matrix theory and numerical linear algebra. Modern
theoretical developments and exciting engineering applications demand efficient
and numerically sound algorithms implemented as robust and accurate numer-
ical software. Better understanding of the sensitivity of numerical problems,
and new paradigms in the algorithmic development open new possibilities and
allow high accuracy solutions to problems that are usually deemed numerically
intractable. In this series of lectures, we show how some recent developments in
accurate linear algebra (accurate algorithms for eigenvalues and singular values,
and corresponding theory) improve numerical computations in control theory,
and contribute to software improvements.

We will use few separate topics as case studies. They are divided in two
groups: (i) construction and analysis of numerical algorithms; (ii) numerical
software development.

(i) We show that carefully designed algorithms (based on detailed error
analysis and perturbation theory) can e.g. simultaneously diagonalize a pair of
positive definite matrices (e.g. for balancing the grammians of a LTI system)
and compute the Hankel singular values with small backward relative pertur-
bations of matrix entries. This is much stronger stability than computing with
backward error that is small in the matrix norm sense. Then, a stronger per-
turbation theory will identify better condition numbers and guarantee higher
accuracy. As our second example, we consider computational tasks (e.g. least
squares rational approximations) where the underlying matrices have a gener-
alized Cauchy or Vandermonde structure. Such matrices are notoriously ill-
conditioned, but with carefully designed algorithms all computation with them
can be done very accurately – we show the details. We use other examples (com-
puting certain canonical forms in control, model order reduction algorithms) to
show how some instabilities undetected spoil the accuracy, and that they are
removable by modifications inspired by error analysis and perturbation theory.

(ii) Advanced applications are based on high level packages, such as Matlab,
and computing engines such as numerical software libraries LAPACK, SLICOT.
We stress the importance of reliable numerical software and call for more math-
ematical rigor in the implementation phase (coding) and testing. To illustrate

1



a problem, we show how adding just one ” WRITE(*,*) variable” statement
to a mission critical code based on the above mentioned libraries, or changing
compiler options, completely changes the computed key parameters of a given
linear time invariant (LTI) system. Such situations may occur only at certain
distance to singularity, and some computational tasks (such as e.g. reveal-
ing a numerical rank) are usually performed and are crucial (and interesting)
on data close to singularity. And, since many phenomena are possible when
close to singularity, any ill–behavior of the software is usually attributed to
ill–conditioning, bailed out by backward stability, and the true problem may
remain inconspicuous. (We give an example of rank revealing QR factorization
software (LINPACK, LAPACK, SLICOT,...) instability that had been circu-
lating undetected in all relevant matrix computation libraries for more than
thirty years.) This is certainly undesired behavior, even if such computation
remains backward stable, and even if the computation is doomed to fail, due
to ill–conditioning. We show the advantages of using state of the art matrix
perturbation theory in rigorous numerical linear algebra software development.

All algorithms described in the theoretical lectures will be implemented (e.g.
in Matlab) in the lab exercises.

2


