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ABSTRACT

A close-look is given at the single-input eigenvalue assignment methods. Several previously
known backward stable QR algorithms are tied together in a common framework of which each
is a special case, and their connection to an explicit expression for the feedback vector is exposed.
A simple new algorithm is presented and its backward stability is established by round-off-error
analysis. The differences between this new algorithm and the other QR algorithms are discussed.
Also, the round-off error analysis of a simple recursive algorithm for the problem (Datta (1987))
is presented. The analysis shows that the latter is reliable, and the reliability can be determined
during the execution of the algorithm rather cheaply. Finally, some numerical experiments

comparing some of the methods are reported.

1 Introduction.

Given a controllable pair of matrices (A, B) and a set Q = {Aq,..., A\, }, closed under complex
conjugation, the well-known eigenvalue assignment problem in control theory is the problem of
finding a matrix F' such that A + BF has the spectrum 2 (see Chen (1984), Kailath (1980),
Szidarovszky and Babhill (1991), etc).

Because of its importance, the problem has been very well-studied in both mathematics and
control literatures. Many methods exist: single-input and multi-input (Arnold and Datta (1990),
Bhattacharyya and DeSouza (1982), Bru et al (1994a, 1994b), Datta (1987), Miminis and Paige
(1981, 1988), Patel and Misra (1981), Petkov, Christov, and Konstantinov (1984, 1986), Tsui
(1986), Varga (1981), etc.); robust eigenvalue assignment (Kautsky, Nichols, and Van Dooren
(1985)); partial eigenvalue assignment (Datta and Saad (1991), Saad (1988)); parallel algorithms
(Arnold (1992), Bru et al (1994c), Datta (1989), Datta (1991), Coutinho et al (1995), Datta and
Datta (1986), etc.); and methods for second-order systems (Datta, Elhay, and Ram (1995), Chu
and Datta (1995)). The backward-stability of some of these algorithms have been established
by round off error analysis (Cox and Moss (1989 and 1992), Miminis and Paige (1988)).

We take another look at the single-input methods in this paper.

In theory all the single-input algorithms produce the same solution (see Wonham (1979)).
It is therefore natural to explore the relationships between these methods. We relate the QR
methods of Miminis and Paige (1981), Patel and Misra (1984), and Petkov-Christov and Kon-
stantinov (1984) under one umbrella and then relate the recursive algorithm of Datta (1987) to

these results. Specifically, we prove a result that shows that all these methods are connected

by a simple property of QR iteration and the explicit closed form solution of the single-input



eigenvalue assignment problem that can be obtained easily from the recursive algorithm.

These results do not seem to have appeared in the literature before. The relationship allows
us to present the QR algorithms in an unified framework through RQ factorizations of deflated
matrices at each step. The unified RQ reformulations of these algorithms are easier to understand
and implement than the original algorithms.

We also present a new algorithm based on the RQ formulation of the single-input recursive
algorithm. We show how this new algorithm differs from other QR algorithms, and establish
backward numerical stability of the algorithm through round-off error analysis. In the course of
proving backward stability of this algorithm, we prove that any single-input eigenvalue assign-
ment algorithm is backward stable if the associated Hessenberg-algorithm is backward stable.

Finally, we present a detailed round-off error analysis of the single-input recursive algorithm,
which is most efficient, and almost trivial to implement, but is assumed to be numerically
suspect. Our analysis shows that the stability of the method can not be guaranteed in general,
but the method is reliable in the sense that we can get an indication, as the method is executed,
when the results are suspect, and the indication can be obtained rather cheaply.

The organization of this paper is as follows:

In Section 2 we present an unified RQ reformation of the three QR methods.

In Section 3 we establish a relationship between these QR methods and the recursive algo-
rithm.

In Section 4, we present a new RQ-based algorithm and discuss the differences of this new
algorithm with the others.

In Section 5 we present the round-off analyses of the proposed algorithm and that of the
recursive algorithm.

Finally, in Section 6 we present some numerical experiments comparing some of the methods.

2 Hessenberg Eigenvalue Assignment

The methods to be discussed in this section have the following basic structure: the pair (A, b) is
first transformed to a controller-Hessenberg form; the desired feedback is then computed for the
reduced problem, and finally the solution to the original problem is retrieved from the solution
of the reduced problem. Recall that for single-input systems, if the Hessenberg matrix in the
controller-Hessenberg form is unreduced, then the system is controllable. The above can be

summarized in the following algorithm template:



Algorithm 2.1 A General Single Input Algorithm
Input: A€ R"™ be R" and Q = {A1,As,..., A}
Output: f € R" such that A\(4A —bf!) =Q

Step 1  Reduce the pair (A4,b) to controller-Hessenberg form
(H, Ber) = (PAP', Pb)

Step 2 Compute k € R" such that A\(H — Be;k?) = Q

Step 3 Compute f = Pk

If, in step 1 it is decided that the system is uncontrollable (i.e. if H is reduced or 8 = 0) and
if those eigenvalues of A which cannot be moved (called uncontrollable modes) do not belong to
Q, then we must stop with failure: Q is unassignable. If the uncontrollable modes are contained
in 2, then we go to step 2 with the controllable part of H and the subset of {2 that remains to
be assigned. Since ) is closed with respect to complex conjugation, then f will be real.

We note here that the (orthogonal) matrix P determined by the reduction must be saved
for use in step 3. Also note that steps 1 and 3 are individually backward stable
operations. We will show in Section 5 that a method that is backward stable for Hessenberg
eigenvalue assignment problem (Step 2) will be backward stable overall.

Remarks: Several remarks on Algorithm 2.1 are in order.

First. The reduction to Controller-Hessenberg form can be achieved in a numerically stable
way using a stair-case algorithm (see, Boley (1981), Paige (1980) and Van Dooren and Verhaegen
(1985), etc.).

Second. Step 1 and Step 3 are the same in all the eigenvalue-assignment methods to be
discussed in this paper.

The different algorithms differ in the way Step 2 is implemented. We will present below
the RQ-formulation of several QR-based algorithms, and an recursive algorithm to implement
Step 2. We will then present a new algorithm based on the RQ-formulation of the recursive
algorithm, thus presenting a link between these apparently different algorithms.

Third. In the section 5, we will prove that if Step 2 is implemented in a numerically stable
way, then the overall algorithm will be numerically stable, thus reproving the numerical stability

of several known @) R-based algorithms and proving that of the new algorithm.



2.1 The Method of Miminis and Paige (Miminis and Paige (1981))

The basic idea of the method is to apply the QR Algorithm with ultimate shifts to the ma-
trix (with unknown first row) (H — Be;k?). If for simplicity we assume that the closed-loop
eigenvalues are all real, then the method consists of n deflation steps and a “backward sweep”.
Each deflation step can be thought of as an RQ factorization of the matrix (H; — Bie1 k!l — \iI).
However, since k; is unknown, the process is not quite so straightforward. We first compute
Q; such that (H; — \;1)Q! = R; is upper triangular. Then U; = (H; — Bie1kl — A\ I)Q! must
also be upper triangular, and we want to choose k; such that U; is singular. Now since H; is
unreduced, the only way that U; can be singular is if U;e; = 0, that is, if ugil) = elUje; = 0.
e
. Yi
Write @Q; = " . Then
| & ]

0=Uer = (H; — Bierk! — N 1)y,

or
Bikty; = et (H; — \il)y; = ). (2.1)
This is a key relation in the method, but it does not allow us to compute k;, so we continue. To

complete the RQ-step we premultiply by @); and add back the \; to get

¢ t [ /\1' % -|
Qi(H; — Bie ky)Q; = - A |
[ 0 Qi(Hi— Bieilk;)Q; J
Now if we define H; 1 = QiHl-Qﬁ,ﬂH_l = qé?ﬂi, and k; 11 = Qiki, then the ith deflation step is
complete; H;y; is unreduced, ;41 is non-zero, and we can continue with the controllable pair
(Hit1, Biv1e1) and the unknown feedback vector k;11 of dimension one less than that of k;.

At the final deflation step we have H, — B,e k! € R ie, k, = (H, — Anl) /By is a real

number.
The backward sweep consists of computing k,_1,k,_2,...,k = k using the relations
kit1 = Qiki (2.2)
and from (2.1)
yiki = 1) /8. (2.3)
Combining these equations we have
(1)
r i
ki = Q! /b gi=n—1n-2,...,1 (2.4)
i+1

We summarize the preceding discussion as an algorithm:



Algorithm 2.2 The RQ Formulation of Single-input Algorithm of Miminis and Paige
Input: H, an unreduced n x n Hessenberg matrix, 8 # 0,

and Q = {A1,A2,..., A}
Output: k& such that A\(H — Be1k?) = Q

Step1 Set Hi=H,and 8, =0
For:=1,2,...,n—1do
Compute (H; — M\;1)Qt = R;, the RQ factorization of (H; — A1
1
Compute 7; = rﬁ) /B; and B;41 = qé?ﬂi
K
Compute Hi+1; where Q1R1 + )\1] =
|0 Hi |
End

Step 2 Compute k, = (H, — A\n)/0Bn
Fori=n—-1,n—-2,...,1do
Ti
Compute k; = Q!
kit1
End

Flop-count: =~ When implemented with implicit double steps, this algorithm takes about %nB
flops. Combined with the §n3 flops required for the controller-Hessenberg reduction, the total

flop count is about 2n?.

2.2 The Method of Petkov, Christov and Konstantinov (Petkov, Chris-
tov and Konstantinov (1984)).

This method, like the Miminis-Paige method, is based on an ultimately shifted RQ step with
immediate deflation. The only real difference between the two methods is how the matrices @);
are computed. In fact, we will show by the end of this section that the (); obtained by these
methods are essentially the same throughout the entire deflation sequence. We will devote a
major portion of this section to an analysis of the RQ factorization (and therefore the deflation
step) in the method of Petkov, Christov and Konstantinov.

If X is an eigenvalue of the Hessenberg matrix (H — (Berk?), then there exists v # 0 such that

(H — M)v = Beik'v. (2.5)



Now partition (H — AI) and v as

v

Hf)\I:[**]andv:[~-|.
S P B P

where T € R" 1"~ ! is upper triangular. Then from (2.5) we have [T cJv = 0, or
To = —vyge.

Since H is unreduced, T is nonsingular and vy, is nonzero; so if we fix vy # 0, we can compute v by
back-substitution. We now have an eigenvalue/eigenvector pair (A, v) of the matrix (H — fe; k?),

and if we can compute an orthogonal matrix @ such that Qv = ae; and Q(H — AI)Q? is a

Hessenberg matrix, then
0= (H — Berk" — X)v = (H — Berk" — M\)aQ'ey,

or
(H = AD)Q'er = B(K'Q%er)en. (2.6)

t
If we now write () = y~ , then (2.6) yields
Q

By = et (H — M)y

Inserting subscripts and continuing in the fashion of the last section, we see that

¢ t [ /\1' % -|
Qi(H; — Bie ky)Q; = . A |

[ 0 Qi(H; — Bierk;)Q; J
Define H;y1 = QiHng,ﬁHl = qé?ﬁi, and k;y1 = Q,k;. If Q; is unreduced, then H,;, is also
unreduced, 3; is nonzero, and therefore the pair (H;41,[;+1€1) is controllable. This is entirely
the same situation as in the method of Miminis and Paige, and as such we can use the same

backward sweep to recover k = k.

We have not yet explained how to compute an orthogonal matrix ) such that Qv = ae; and

Q(H — A)Q? is a Hessenberg matrix; the following lemma illustrates the construction.

Lemma 2.1 Let Hv = \v, where H is an unreduced upper Hessenberg matriz. Let the Givens
rotations Jy in the k and (k + 1)% planes be such that JiJip1 -+ Jp_1v = (zt,a;,0) for i =
n—1,n—-2,...,1, where z; € R""*" and oy € R. Then

(H-X)J. | J: ,--J =R (2.7)

18 upper triangular.



Proof: Define M, = (H — X\I)J!. _,J! ,---J! and suppose that

where y; € R?*!, R; € R™ " is upper triangular, and { ' . is an unreduced upper
0 v J

kifl * -| 3
is also an unreduced upper

0 i,
Hessenberg matrix and that R;_; is upper triangular. Thus, by induction we will have (2.7).

Hessenberg matrix of order i. We will show that {

Now

ki x %
Mgy =] 0 gt x |,
0 0 R;
and since (H — A )v = 0 we must have that

Ti—1

0=M,_1(Jicadi - Jn—1v) =M1 | a4

Therefore y! must be of the form g! = (0,y) € R'*?, with

ki1 * *
M;_, = 0 vy, *
0 0 R
R; 1 upper triangular, and
ki1 *
0 Yyl

unreduced upper Hessenberg. This completes the induction step; and since M; is an unreduced

upper Hessenberg matrix, the proof is complete.

Quite simply, the rotations J; that are defined by v provide the RQ factorization:
(H—-XD)J: JL - JE=(H - \)Q' = R.

We summarize the Petkov-Christov-Konstantinov method:



Algorithm 2.3 The RQ-Formulation of the Single Input Method of Petkov,
Christov and Konstantinov
Input: H, an unreduced n x n Hessenberg matrix, 8 # 0,
and Q = {1, Aa,..., A}
Output: k such that A\(H — Be;k?) = Q

Step1 Set Hi=H,and 8, =0
For:=1,2,...,n—1do
Compute (H; — \;1)Q! = U;, the RQ factorization of
(H; — \;I) by computing v; such that (H; — \;I)v; = yey
and then computing the rotations J; such that
JiJy - Ju_ip1v; = £||vil|2e1, and finally setting
Qi=hJs- - Jn—it1
Compute 7; = €\ (H; — N\i1)Qle1/B; and Bip1 = qé?ﬂi

Compute H;y1, where Q,;U; + \; I = { * * -I

End

Step 2 Compute k,, = (H,, — Ay)/Bn
Fori=n—-1,n—-2,...,1do
Ti
Compute k; = Q!
kit
End

Flop-count: Ifimplemented with care, this algorithm takes about §n3 flops. When combined

with the gnS flops required for the controller-Hessenberg reduction, the total flop count is about

10

3
3 .

n

2.3 The Method of Patel and Misra (Patel and Misra (1984)).

We have now seen two methods based on an explicit RQ step with immediate deflation. It
should come as no surprise that an implicit RQ step is possible, and in order to handle complex
pairs of eigenvalues with real arithmetic, an implicit double step is needed. Such a method was

proposed by (Patel and Misra (1984)). The method is similar to the method of Miminis and



10

Paige (1982), but it includes an alternative to the “backward sweep”, and is the first published
description of the implicit double-step in the single-input eigenvalue assignment problem. We

will outline an implicit single-step here.
t.

n?

First, compute an orthogonal matrix P; such that e! (H; — \;I)P! = «ael; then compute

another orthogonal matrix U; such that U; P,H; P}U} is an upper Hessenberg matrix; finally, set
Q; = U, P;. The matrix U; “chases the bulge” up the subdiagonal of PiHin. We are now in the

familiar situation of computing k; such that

/\z' *

"
0 Hipr — Biprerki,

Qi(H; — Bierk)) Q! =

t
If, as before, we set @Q; = yf , then with 7; = kly;, we must have

i

ah) )

ﬂz‘Qﬁ) ﬂiqgil) 7

with the continuation H;1, = QiHng,ﬁHl = qé?ﬁi, and k;y1 = Q,k;. After n such steps we
expect the usual backward sweep, but it is shown in Patel and Misra (1984) that this computation

need not be put off that long: the backward sweep

-
ki =Q! liz=n—1,n—2,...,1
i+1
is equivalent to the “forward update”

Q=1 k=0and
=k 47150, Q=0:Q, i=1,2,...,n—1.

Algorithm 2.4 The Single Input Algorithm of Patel and Misra
Input: H, an unreduced n x n Hessenberg matrix, 8 # 0,

and Q = {A1,A2,..., A}
Output: k such that A\(H — Bejkt) = Q
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Stepl Set Hi=H,/h=3,0Q=1,and k=0
For:=1,2,...,n—1do
Compute P; such that el (H; — \;I)P! = ael,
Compute U; such that U,P;H; PIU}

is an upper Hessenberg matrix

t
Set. Q; = [ yf -I =U;P;
| & ]
Compute 7 = e} (H; — M, I)Qle1 /B;
Compute f;41 = qé?ﬂi
; [ * % -|
Compute H;;1, where Q; H;Q; = [ . J
i+1
Compute k = k + 7Qy!
Compute Q = Q;Q
End

Step 2 Compute 7 = (H, — \,)/0Bn
Compute k = k + 7Q!

Flop-Count: If implemented with implicit double steps, this algorithm is the same as
the method of Miminis and Paige (1982), except for the forward update/backward sweep, which
either way is O(n?) flops. Therefore, this method requires about 2n* flops. When combined

with the %n3 flops required for the controller- Hessenberg reduction, the total flop count is about

5

3
5 .

n

2.4 A Recursive Algorithm (Datta (1987))

We reproduce below the recursive algorithm of Datta (1987), which is apparently different from
the three just described, and show how this algorithm produces an explicit formula for the
single-input feedback vector.

In the next section, we will present an RQ-formulation of this method. This new RQ method
will help elucidate the relationship between the other RQ methods and the explicit expression

for the feedback vector obtained by the recursive formula.
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Algorithm 2.5 A Recursive Algorithm (Datta (1987))

Input: H, an unreduced n x n Hessenberg matrix, 8 # 0,
and Q = {A1,Aa,..., A}

Output: k& such that A\(H — Be1k?) = Q

Step1 Setl; =e,

Step2 Fori=1,2,...,n—1do
Compute fi+1 = (H* — \;1)l;
Compute ;41 = bifi+1, where b; is chosen
so that [|l;]| € (1,1], say
End

Step 3 Compute k =

1

S (H — XD,

Flop-count:  This method requires only about tn® flops. When combined with the 3n®
flops required for the controller-Hessenberg reduction, the total flop count is about %n3. Given
a system in controller-Hessenberg form, this method is more than five times as fast as the method
of Miminis and Paige. The assignment of complex pairs of eigenvalues in real arithmetic requires

a slight adjustment to the above method, but does not alter the operations count.

A Closed-Form Solution of the Single-input EAP

We now show that this method yields an explicit closed-form solution for the single-input prob-

lem. The recursion in step 2 above yields

Vg1 = (H" = M I)(H' = MoI)--- (H" = X\i D)y, (2.8)
and including steps 1 and 3, (2.8) becomes

ak = (H' = MI)(H" = XoI)--- (H" — X\, 1)e,, (2.9)

where a = (Bhathgs - hp )" I ¢(x) = (x — Mi)(z — A2) - (z — \,), then this will be
written as

k' = ael ¢(H). (2.10)

Since this solution is unique, it represents the Hessenberg formula for the single-input EAP.
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2.5 Of Methods not Discussed

A. Varga (1981) proposed a method very different from those considered here. It has largely
been ignored by numerical linear algebraists because of a reduction of the original system to
controller-Schur form (T = PAP? is block upper triangular with 1 x 1 or 2 x 2 diagonal blocks,
and k = Pb is a “full” column vector, see Varga (1981) for details). It is argued that, besides
the extra work involved, the method suffers from the fact that possible illconditioning of the
eigenvalues of the original system introduces unnecessary errors into the computation. These
criticisms, while entirely valid from an algorithmic perspective, may be unwarranted from a
more global view. It may be that knowledge of the original spectra (provided by the controller-
Schur form and not by the controller-Hessenberg form) is necessary for intelligent Eigenvalue
Assignment. In that case the information provided by the Schur decomposition might be used
in choosing €. If the eigenvalues of the original system were found to be illconditioned, a
Hessenberg method might be preferable; but if not, continuing on with the method of Varga
would be more efficient.

There exist many methods for the Eigenvalue Assignment problem, and we have chosen to
discuss only those few with positive numerical attributes (e.g. stability and efficiency). Methods
that depend on Jordan or Frobenius forms are both expensive and unstable. Most closed-form
solutions for the feedback vector require such forms and hence lead to poor numerical methods.
One of the most well known closed-form solutions is due to Ackermann (1972); while it is often
held as an example of how not to solve the EAP, we will see in the next section that each of the

methods discussed in this paper are closely related to that solution.

3 Relationship Between the Various Methods

In this section we will explain the relationships between the methods of Miminis and Paige;
Petkov, Christov, and Konstantinov; Patel and Misra; and Datta. We will show that the
Miminis-Paige, Petkov-Christov-Konstantinov, and Patel-Misra methods yield the same data at
each deflation step, the only difference being the technique used for an RQ factorization. Then
we will present an R(Q implementation of the recursive method that ties all four of the methods
together.

The Miminis-Paige, Petkov-Christov-Konstantinov, and Patel-Misra methods all have an
RQ factorization at the heart of the deflation step. With the original method of Miminis and
Paige we have the explicit Hessenberg RQ factorization, with that of Petkov, Christov and

Konstantinov we have a novel “triangular system” Hessenberg RQ factorization, and with the
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method of Patel and Misra we have the implicit Hessenberg R(Q factorization.

These methods all begin with the same data, the pair (H, Se;) and the closed-loop spectrum
; furthermore it is clear that each of the methods generates the 7 + 1°¢ set of data by applying
an RQ iteration step to the i'” set of data. Thus, given the matrix H;, the Implicit-Q Theorem
(or the uniqueness of the RQ factorization) guarantees that whichever method we choose, the
unreduced Hessenberg matrix H;; is essentially (that is, up to a diagonal scaling of +1) the
same. One might question the uniqueness of the RQ factorization (or equivalently, the implicit
RQ step) if A; is an eigenvalue of H;. Indeed, in this case it is not unique, for while Q; is
completely determined, the first row of R; is underdetermined. But if we now note that the
deflation step is taken immediately in each of the methods, it is clear that the first row of R;

plays no part in the computation. We have proven the following lemma:

Lemma 3.1 In exact arithmetic, the methods of Miminis and Paige, Petkov, Christov and
Konstantinov and Patel and Misra all generate the same data H;, and Q); at each deflation step,

up to a sign scaling, fori=1,2,... . n.

The differences between these methods, at each step, depend only on finite precision. The
discussion above allows us to give a generic formulation of all of the QR-based single-input

algorithms as follows:

Algorithm 3.1 Generic RQ-based Single Input Algorithm
Input: H, an unreduced n X n Hessenberg matrix, 8 # 0,

and Q = {A1,Aa,..., A}
Output: k such that A\(H — fBe k?) = Q

Stepl1 Set Hi =H and 3, =0
For:=1,2,...,n—1do
Compute ); from a shifted RQ step with H; and \;:
H; = Q:H,Q!

Al A —hlY
Compute 7, = —2 = 11

hoy  _ Aimhyy
Bial?) Big?
Compute Bit1 = Bigs)

3 3

0 Hip

Compute H;y1, where H, =

End
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Step 2 Compute 7, = )‘”/gH"

Step 3 Compute k! = (71,72,...,7)Qn_1Qn_2- - Q1

The manner of computing the RQ steps in this generic method is not specified; an explicitly
shifted RQ step with Givens rotations yields the original method of Miminis-Paige, explicitly
computing the RQ factors using a closed-loop eigenvector gives the method of Petkov-Christov-
Konstantinov, and an implicit RQ step corresponds to the methods of Patel-Misra and Miminis-
Paige. We also note that 7; can be computed using either of the quantities given above, or if R;

is available, as 7; = rﬁ)/ﬂi.

4 A New RQ-based Method

We now present a new RQ implementation of the recursive algorithm of Datta that will make
explicit the connections between all of these methods and the explicit formula (2.10).

While this method was discovered and proved in the context of the matrix equation
H!'L - LB = ce%,

we can show its relationship with the often maligned formula of Ackermann. Ackermann (1972)
showed that if
Br) = (5 — A)(@ — Xa) -+ (& — A,
then the unique solution to the EAP for the controllable pair (A,b) is
£ = e CT0(A), (41)
where
C=1|b Ab, --- A" 1p |.
If (H,Be1) = (PAP?, Pb) is the controller-Hessenberg form of (4,b), then from (4.1)
fIPU = O B(A)P!
et C7'P'¢(H)
= e, (PC)1o(H),
where PC is an upper triangular matrix. If a1 is the (n,n) element of PC, then e! (PC)~! =

t
n

(in fact a1 = 3 Hin;ll hit1,)-

ael, and we see that the formula, k' = ael ¢(H) is a Hessenberg case of Ackermann’s formula
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The recursive algorithm is an extremely efficient way to solve the Hessenberg Single Input
problem, but as we will see in Chapter 6, backward stability cannot be guaranteed. Having
been aware of possible instabilities in the recursive formulation, Datta (1992) suggested that

this method could be implemented using QR iterations as follows:

Set H1 =H

Fori=1,2,...,n compute the QR step
Q1R1 = Hi — )\lI
Hipn = RiQi+ NI

Then it can be shown (Stewart [1972, 353]) that
¢(H)=Q1Q2 - QnRyRy 1+ R,
and setting @ = Q1Q2 - Q, and R = R, R, 1 --- Ry, formula (2.10) becomes
k' = ael QR.

The difficulty of implementing this strategy is that the R; need to be accumulated; this is both
expensive and unstable.
We now show how the method can be made computationally efficient by using RQ factor-

izations instead of the QR factorizations.

Set Hy = H

Fori=1,2,...,n compute the RQ step
RiQi = Hi—X\I
Hipn = QiRi+ Ml

This time

¢(H) = RlRZ"'RnQnanl "'Ql; (42)
and by setting Q = Qn,Qn_1---Q1 and R = Ri Ry - -+ R,,, we have

k' =ae! RQ = apelQ,

where p =[], ri%). This is a much nicer situation! Furthermore, we will now show that it is

possible to “deflate” the problem at each RQ step.
Write Q;,7 = 1,2,...,n as a product of Givens rotations ); = Jl(i) J2(i) ---Jffll, where J,Ei)

is a rotation in the k and k£ 4+ 1 planes. Then

e%Q = efljl(n)t]g(n) "'Jéri)lanlQn72"'Ql
= einéTi)lanlQn72 e

N L (N (Ciale M s MY (4.3)
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or k' = apel QnQn_1 - - Q1, where Q = J;(fi)l Jék) e Jgi)l. Algorithmically we have

Algorithm 4.1 A Proposed Single Input Algorithm

Input: H, an unreduced n x n Hessenberg matrix, 8 # 0,
and ) = {)\1,)\2,.. ,An}

Output: k such that A\(H — Be k?) = Q

Step 1 Compute R1Q)1 := H — M\ I, the RQ factorization of H — A; [
Compute H2 = Q1R1 + )\1]
Set Q = @y and p = i)

Step 2 Fori=2,3,...,n—-1
Compute R;Q); := H — \;1

* * -|
Compute H;y1,where Q;R; + A I =

e
1
Update @ := [ -I Q
| @]
Update p := PTS)+272‘7n+272‘ (7"53272-7n+272- is the last element of R;)

End

Step 3 Update p := p(H,, — A\p)
Compute k' = apel Q

Remark: The RQ factorizations in this method can be implemented implicitly with a
double step, but as with the previous methods this has been omitted for the sake of clarity.
Note also that there are no divisions in this method until a is computed in the last step, i.e. the
troublesome computation of
I TP iy I
B Bl P

which appeared in the other methods does not appear here.

Ti

Flop-count: Implemented using implicit double-steps with @) kept in factored form, this
method requires about %n3 flops. When combined with the §n3 flops required for the controller-
Hessenberg reduction, the total flop count is about %n3, the same as the the Miminis-Paige and

Patel-Misra methods.
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4.1 A Relationship Between the Proposed Method and other RQ
Methods

We promised that this method would shed some light on the relationship between the other RQ
methods and the closed-form solution (2.10). While the connection between this RQ method
and the closed-form solution is clear, we have yet to close the final link. There are two differences
between this method and the generic RQ method: (i) deflation does not commence after the
first iteration here as in the generic method, and (i¢) the scalar ap in this method takes the
place of the vector 2t = (11, 79,..., 7).

When viewed from the perspective of the generic method, these two distinctions are the

" into the vector ape! , one step at a time.

result of transforming the vector x
To see how this works let us consider an explicit RQ factorization of H;, an unreduced
Hessenberg matrix of order k, say. In the generic method the RQ factorization effectively stops
when the matrix H;Q! is of the form
. A %
HiQi = ) (44)
0 T
where A is 2 x 2 and T is upper triangular. In the proposed RQ method above, we are one
deflation step behind, so that one more rotation is needed to put A into triangular form. This

rotation V; will be such that H;Q!V;! is upper triangular; but it also rolls [, 7;41] into [0, 7], for

[as1,ax] = [rﬁ)%,ryﬁl)]
() (+1)

B35, (45)

)
i

= ﬁz‘+1[Tz‘=Tz‘+1]-

We have proven the following theorem:

Theorem 4.1 The generic RQ) method generates the orthogonal matrices Q; that satisfy
k= (11,72, T0)@u@Qur - Qn,
while the proposed method generates the orthogonal matrices P; = Q;V; such that
k= ape;PnPn,l - Py,

where

and V; is a rotation in the planes i and 1 + 1.
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5 Error Analysis

A systematic round-off error analysis of most of the existing and currently used algorithms in
control theory is lacking. As far as algorithms for the EAP is concerned, round-off error analyses
of only the methods of Miminis and Paige and Petkov, Christov and Konstantinov have been
presented (Cox and Moss (1989 and 1992), Miminis and Paige (1988)).

In this section we give a detailed round-off error analysis of our proposed single-input al-
gorithm (Algorithm 4.1) described in Section 4, and prove that it is backward stable. In the
course of this proof we show that any algorithm for the EAP is backward stable if it is backward
stable for the corresponding Hessenberg problem. We then give a round-off error analysis of the
recursive algorithm. Our analysis shows that the latter, while it may not be backward stable,

is reliable in the sense that we can detect precisely when the results are suspect.

5.1 An Error Analysis of the Proposed Single Input Method

The backward error analysis of eigenvalue assignment methods has turned out to be a non-
trivial task. For example, the RQ-based methods of Section 2 are straightforward adaptations
of the Hessenberg QR iteration, and while a backward error analysis for the QR iteration is
quite simple, that for the eigenvalue assignment methods is not (see e.g. Cox and Moss (1989
or 1992)). The major difference is that backward error analysis for the QR iteration in the
eigenvalue problem is naturally focused on showing that the next iterate is (exactly) similar to
a matrix that is close to the current iterate, while for eigenvalue assignment we cannot, in a
straightforward way, use similarity as a tool. In order to simplify the analysis, we show that
backward stability is achieved if one can solve the Hessenberg single-input eigenvalue assignment

problem in a backward stable manner. First we prove that Algorithm 4.1 is backward stable.

Theorem 5.1 The RQ-based single-input eigenvalue assignment (Algorithm 4.1) is backward
stable, i.e. it computes a feedback k such that

MH + 6H — (B+ 6B)er(k + dk)") = Q,
where 0H, 63, and ok are small.

Proof: Let H, = H, = H, and let H; be the computed iterate at the i*® QR step. Let Q;
be the computed transformation at each step. Then we have from basic error analysis (see e.g.

[Wilkinson (1965), 110-160]) that there exists an orthogonal matrix @); such that

Hy = Qi(Hy +6H1)Q], Q1+ Ei =Qn,
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where ||0H||p < f(n)umaz{||H1||F,|\i|}, and ||E1]|F < g(n)u, where g and f are modest
functions of n, practically behaving like cn, with ¢ a constant of order unity. Note that with an
implicit double RQ step, the upper bound on ||0H;||r is independent of A;. Now iterating on

these results leads to

Hn: n— 1(H1+6H) n—11 Pn71+E:Pn71: (51)
where P = Qn 1Qn2---Q1, Po1 = fl(Qn-1Qn-2---Q1). Here, ||6H|[r < unf(n)
maz{||H| r,| |,k = 1,2,...,n} and HEHF < ng(n)u. These bounds are pessimistic now,

because of the maximum over |A;| and because we have not considered the fact that H; and Q;
are actually (n —i+ 1) x (n —i+4 1), not n x n. Now with P = P, the feedback k is computed
as k! = vel P, so up to the scalar y, we are done. We have shown that e! (P + E) is exact for a
matrix H + §H, where ||ef, E|| < ng(n)u and ||§H|| < unf(n) max{||H| r, | \¢|}. We now show
that v can be computed in a backward stable fashion, thereby completing the proof.
Remember that v = ap, where p = [[\_, ri, « = ([T, 8:)"", Bi = hiic1, Bo = B, and
r; = r%ir)l is the (n,n) entry of R;,. Now let 7; be the computed value of r;, where R; is exact for

the computed matrix H;. Then the errors not accounted for in ||§H|| can be expressed as

P = B2 (L ) + [ — M) (1 + €)2(1+ €) (1 + €a),
where |€;| < u. Write this as 7; = r;(1 4 §;), where |§| < 2u. Now 7 = fl(pa) so that

ﬁrll+(5 (1+m7)
Bi(1+¢€;)

’
i=1

where |7;|, ;| <u,i=1,2,...,n. Therefore,

)

ﬁ (1+68)(1+7)
Py (1+¢)

and if we assume that nu < 0.1, then conservatively
|y =41 < 5nulyl.
If we write v = (8, H), then our result reads
y=7(8+08,H +0H),

where 0H is the same as in (5.1), and \6Aﬁ| < 5nu. Finally, the error from the scalar-vector

operation k! = ve! P can be thrown back into 3, yielding a computed feedback k such that

k=% E+k(B+ 3, H+5H),
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with [68| < 5nu.

Remark: The popular definition for backward stability is not used here for a very
simple reason. Consider proving that the computation of a Householder reflection is backward
stable. One must show that the computed matrix is exact for a problem close to the original.
This is impossible, even for the n = 2 case, for the computed matrix is almost always not
an orthogonal matriz. This difficulty is removed by adopting the more general definition of
Stewart [1972, p.76], which requires that the computed solution be “near the exact solution of a
slightly perturbed problem.” Datta (1995, p.87) has called such stability mild-stability. In the
above proof, the quantity el E is the difference between the computed solution and the exact

solution for the perturbed problem, and with k = k(8 + 08, H + 6H) we have (pessimistically)

|k — K||/|lk|| < enu, where c is a constant of order unity.

Theorem 5.2 The following 3-step procedure for solving the controllable single-input EAP for
(A,b,9), is backward stable if step 2 is backward stable.

Step 1 Using the method of Householder, reduce the pair (A,b)
to the controller-Hessenberg form (H,r) = (QAQ?, Qb).

Step 2 Compute the solution k to the EAP for (H,r,().

Step 3 Compute f = Qk.

Proof: Let H, 7, and Q be the computed versions of H, r, and () respectively. There exists an

orthogonal matrix Q such that
Q- Q=EFEqg, QAQ'=H + Ey and Qb =7 +¢, (5.2)

where ||Egll < uyo(n), |Eu| < 2cnul|A|, & < cnulb|| and yo behaves, for all practical
purposes, like cn®/?, with ¢ of order 10 [Wilkinson (1965), 160-161].
Let k be the computed solution to the reduced problem (H,7,2). Denote by f the computed

solution to the original problem; then
F=8QF) = Q'+, (5.3)

where ||é;|| < nu|k||. Substituting (5.2) into (5.3), we have

f=0h+ ) (5.4)
Here é;, = €5 — Eél%, and so ||é]| < unyy(n)||kl, y1(n) = yo(n) +n.

Now by hypothesis, there exist (H,7) close to (H,7), and k close to k, such that k is the
exact solution to the EAP with input (I;T,F, Q). Write H = H+Ey, i=7F+¢ and k = k + &,
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where

1Eull < wenl|All, & < war|bll, and (& < wa|[&.

Finally, taking 04 = Q'(Ex + Ex)Q, 6b= —Q'(¢, + é,) and and 6 f = —Q'(¢, + ), we have
A+6A— (b4 0b)(f+0f) = Q'(H — bkHQ, (5.5)

with [[0A| < wllAll(zx + 2cn), 10b]] < w|[bll(z; + cn), and [[6f]| < wllkll(zx + y1(n)).
Remark: Since our proposed Hessenberg algorithm is backward stable, the above theorem

guarantees that our method is backward stable for the pair (A4, b).

5.2 An Error Analysis of the Recursive Single-Input Method

Recall that this method computes a matrix L and a vector k such that HL— LA = ke!,. A careful
look at the iteration reveals that the forward error has a special form. Define the polynomials
¢k for j < k by

Gjk(x) = (= Aj)( = Aja) - (2 = M)
Theorem 5.3 Let af be the computed solution to the single-input eigenvalue assignment prob-
lem for (H,Be1,Q). If af is the exact solution, then

af —af =Y ¢jn(H)e;. (5.6)

Jj=1

Proof: Let I; be the computed value of the it column of L. Define €; by l;11 = (H — A\ 1)l; +¢;.
Since 1 = I, we must have that lo = ls + €; suppose I; = I; + Z;;ll ¢j.i—1(H)e;. Then

livi = (H-\NDIi+e
= (H-X)li+ X2 665 1(H)) +e
= i1+ 250, ¢5.0(H))ej

Now af = I,,1, and therefore

af =lp + Y ¢jn(H)ej,

j=1
or .
af —af =3 ¢;n(H))e;.
j=1
The €; can easily be bounded; for example if a machine base scaling is used to normalize [j,

then it is simple to show that

llej |l < Bmnul|H — Aj||r,
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where (,, is the base. Unfortunately, not much can be said about backward stability from a
result like this. It is not a necessarily bad result either, for the closed-form expression for the
single-input feedback is ael ¢ ,,(H).

It is possible to shed some light on the stability of this method by looking at the €; in a

different way.

Theorem 5.4 Let E = [e1,€2,...,€,] and let L = [l},l} . ,in]. Then af solves (exactly) the
single-input EAP for the perturbed system (H — EL~"', Be1,Q), where the ¢; are the same as in
theorem 5.3.

Proof: Notice that as defined L satisfies the Sylvester equation
HL - LA=E+afé.,
where A = diag();). Since L is nonsingular by construction, we can solve the perturbed equation
(H+AH)L — LA = E + afe! (5.7)

for AH. This yields —AH = EL~!, and by satisfying (5.7), af solves the EAP for (H +
AH, (e, ).

5.3 Remarks on Numerical Stability and Reliability

iFrom the above result we cannot say that the method is backward stable. We have simply
provided an upper bound on the size of the ball around the initial data, inside which there exist
(H + AH, 3+ 4p) for which the computed solution is exact. If ||[AH|| could be bounded above
by a small quantity that was relatively independent of the initial data, then the method would
be backward stable. But Theorem 5.4 does allow one to say precisely when the results from the
method are suspect. It is clear that ||E|| is always small if the iterates are normalized every few
steps, so that all of the backward error information is contained in L~!. Since L is triangular,
it is possible to estimate ||L~!|| rather cheaply, even as the iteration proceeds.

The matrix L yields a bit more information about the eigenvalue assignment problem. If
the closed-loop eigenvalue problem is poorly conditioned, then we cannot expect the closed-loop
eigenvalues to be correct (or even well-defined), even when the feedback f is computed to very
high accuracy. Now we know from construction that the method yields matrices L and A such
that

H — feif' = LAL™Y,
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where A is bidiagonal. It is easy to show that if the closed-loop eigenvalues are distinct, then A

is diagonalized by the matrix X = [z;;], where

1, 1=
zip =4 T O =) 7Y, >
0, j<i

Therefore, the closed-loop matrix is diagonalized by the matrix P = L' X which is conveniently
factorized into triangular factors, with X a unit upper triangular matrix. The inverse of P is

given by P~! = X 'L, where X ! = [y;;], and

1, i=j
Yij = H{«:H-l(/\j M) >
0, j<i

This leads us to an upper bound on the eigencondition of the closed-loop matrix
IPIIPH = L7 XX AL < IXHIXHIILAE )

The triangular factors facilitate an O(n?) LINPACK-like condition estimator of P =
L='X. We cannot say that whenever L is illconditioned, the closed-loop eigenvalues are ill-
conditioned, for L is simply a factor of P; but computational experience has shown that it is a

good indicator.

Numerical Experiments

We include here several computational experiments that compare the accuracy of the proposed
method (RQ) with that of Miminis & Paige (MP) and Datta. The M&P method was chosen as
representative of the QR-based methods primarily because of the matlab script SEVAS, written
by Miminis, and available to the public (Miminis 1991). All computations were done on a
Sun Sparcstation LX. Matlab, version 4.2C, was used to compute the feedback vector using
the m-files SEVAS.m for the MP method, SIPPD.m for Datta’s method, and SIPPRQ.m for
the proposed method (STPPD.m and SIPPRQ.m available from Arnold). Matlab computations
are double precision with a machine epsilon of g = 2752, In all tests an “exact” feedback was
computed using the method of Datta, coded in D. Bailey’s multi-precision fortran (1992) with a
500 decimal digit floating point representation. Datta’s method was chosen for its efficiency and
ease of implementation. In all of the experiments, the initial data is in controller-Hessenberg

form. The computation of an exact solution allows one to avoid the eigenvalue computation
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(and the associated errors) necessary in the common practice of measuring error by computing
the eigenvalues of H, removing its first row, and then assigning the original eigenvalues to the
perturbed matrix.

For a backward stable method, one expects the size of the error in the computed solution
to be roughly equal to the product of the machine epsilon and the condition number of the
problem. We have included in these tests the computation of a relative condition estimator (the
estimator v, given in (Arnold 1992), requires about % the work of either of the methods being
compared). We would like to emphasize two points here: first, we are measuring the error in
the computed feedback, not in the closed-loop eigenvalues; and second, this condition estimator
is neither a lower nor upper bound on the true condition number, which, while computable,
requires at least O(n*) flops for the general case.

For all of these experiments the Matlab code that generates the test data, and the seeds for
the random number generator are available from Arnold.

In the first experiment, a random matrix with elements uniformly distributed in [—1,1] was
generated using Matlab’s RAND function. This matrix was then reduced to Hessenberg form
and its elements rounded to 15 binary digits, resulting in the system matrix H. Next, a unit

random vector, r, was generated and the eigenvalues of the matrix H — e;r?

computed. These
eigenvalues, rounded to 15 binary digits, become the desired closed-loop poles. For a relatively
well conditioned eigenvalue assignment problem, we expect the exact feedback to have norm
near unity.

Thirty such runs were performed on matrices of size n = 100. The results are decribed in
figure 1 and table 1. Figure 1 is a scatter plot showing — log;,(e.), where e. = || f — f.|l/ Il fl, f is
the exact feedback and f,. is the feedback computed by one of the methods being compared. The
x-axis serves only to label the data points; each integer k, from 1 to 30 represents a data point,
and each data point consists of 4 quantities, namely the predicted error and the error for each of
the 3 methods being compared. The y-axis in the figure represents the (negative of) the number
of correct digits in the computation, thus a smaller (closer to —oc) y-component, represents a
smaller error. In order to make the plot easier to read the data is sorted by the predicted error,
vy, and the predicted error is plotted as a continuous curve by linear interpolation. Note that
even for problems of size n = 100 (considered large for single-input eigenvalue assignment), the
feedback vector is computed to high relatively accuracy by the backward stable methods. This
observation supports the argument that the generically dismal behavior of eigenvalue assignment
for large n is not caused by innacurate feedback, but is primarily attributable to the conditioning

of the closed-loop eigenvalues relative to the size of the feedback vector.
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Table 1 provides some statistics associated with the data shown in figure 1. The quantity
“digits accurate” is simply —log,,(e.), which is approximately the number of correct decimal
digits. The least accurate result in the sample is reported under “Minimum” accurate digits,
and the average number of correct digits in the sample is reported under “Average”. In an
attempt to remove the “bias” of conditioning from the statistics, a backward error statistic
is also computed as e, = ef/vqs. The justification for this statistic is that given a backward
stable method, the true condition number v, and a small (relative to 1/v) machine epsilon y, the
quantity es/v should be approximately bounded by pu. Thus, we define the quantity “backward
digits accurate” as —log;,(ep). The least accurate sample with respect to this scaled error is
reported as “Backward Minimum”, and the average of the scaled errors is reported as “Backward
Average”.

Table 1 Summary Statistics of Relative Errors for 30 Randomly Generated Systems of order 100

Accurate Digits
Method | Average | Minimum | Backward Average | Backward Minimum
M&P 12.5 11.9 16.0 15.1
RQ 12.7 11.9 16.1 15.6
Datta 8.33 7.30 11.8 10.6

The next experiment is constructed as the first, but with n = 20, and with illconditioning
introduced by uniformly scaling the subdiagonal entries of H so that the product of these
entries is between 1 x 1071% and unity. Again, we include a scatter plot for 100 runs, and a table
summarizing the results; these are given in figure 2 and table 2, respectively.

Table 2 Summary Statistics of Relative Errors for 100 Randomly Generated Systems of order 20

of Varying Degrees of Illconditioning

Accurate Digits
Method | Minimum | Average | Backward Average | Backward Minimum
M&P 5.31 10.8 16.0 14.5
RQ 5.50 10.8 16.0 14.5
Datta 5.21 10.8 16.0 13.9

The last experiment is constructed as the first, but with the Hessenberg matrix H always




set to (see Miminis 1981)

-1 -1 -1
-1 -1 -1
1 -1 -1

0 1 1
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A perturbation on the order of 2!~" makes this system uncontrollable. The system size varied

from n = 3 to n = 32, and one sample was taken for each n. In figure 3, we display the errors

as a function of n, and as such, the data are not sorted.

Table 3 Summary Statistics of Relative Errors for Example 3 of orders 3 to 32

Accurate Digits
Method | Average | Minimum | Backward Average | Backward Minimum
M&P 8.52 1.22 16.1 15.5
RQ 8.48 1.67 16.1 15.4
Datta 9.16 2.18 16.7 15.5

Summary and Conclusions

In this paper, we have considered various computational aspects of the single-input eigenvalue

assignment problem in control theory. We summarize the results of the paper below.

I. We have built a framework around which the QR-based methods are all special cases. We

have found that these apparently different methods differ only on how the RQ decompo-

sitions are computed.

II. We have proposed a new method based on the RQ formulation of the recursive algorithm

of Datta (1987). An intimate relationship of the latter with the other QR methods has

been exposed via an explicit formula of the feedback vector obtained from the recursive

algorithm.

ITI. We have proved that the proposed algorithm is backward stable by a round-off error

analysis. A more general theorem obtained in this context shows that an algorithm is

backward stable if the associated Hessenberg-algorithm is stable. It remains to see if the

stability of the other QR algorithms can be reproved from the relationship mentioned in

L.
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We have given a detailed round-off error analysis of the recursive algorithm. Our analysis
shows precisely when the results are suspect, and this phenomenon can be determined as

the algorithm proceeds, in a relatively inexpensive way.

We have reported the results of a numerical comparison of some of the methods.

In the multi-input case, even though the solution is not unique, it might still be possible to

obtain a relationship between the solutions obtained by different algorithms. A parameterized

expression for the closed-form solution obtained in the Thesis of Arnold (1992) might play an

important role in this context. Also, a QR formulation of the multi-input algorithm in Arnold

and Datta (1990) is in order.
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CAPTIONS FOR FIGURES:

Figure 1: Scatter plot for 30 problems of size 100. logio(e.) is (the negative of) the number of
correct decimal digits in the computed feedback. The predicted error is given by the “continu-

ous” curve, Datta’s method is represented by "*’, MP by '0’, and the RQ method by ’x’.

Figure 2: Scatter plot for 100 problems of size 20. logio(e.) is (the negative of) the number of
correct decimal digits in the computed feedback. The predicted error is given by the “continu-

ous” curve, Datta’s method is represented by '*’, MP by ’o’, and the RQ method by ’x’.

Figure 3: Plot for 29 problems of size n = 3 to n = 32. Now the x-axis represents the size of the
system, and the data has not been sorted. logig(e.) is (the negative of) the number of correct
decimal digits in the computed feedback. The predicted error is given by the “continuous” curve,

Datta’s method is represented by *’, MP by ’0’, and the RQ method by ’x’.



