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2ABSTRACTA close-look is given at the single-input eigenvalue assignment methods. Several previouslyknown backward stable QR algorithms are tied together in a common framework of which eachis a special case, and their connection to an explicit expression for the feedback vector is exposed.A simple new algorithm is presented and its backward stability is established by round-o�-erroranalysis. The di�erences between this new algorithm and the other QR algorithms are discussed.Also, the round-o� error analysis of a simple recursive algorithm for the problem (Datta (1987))is presented. The analysis shows that the latter is reliable, and the reliability can be determinedduring the execution of the algorithm rather cheaply. Finally, some numerical experimentscomparing some of the methods are reported.1 Introduction.Given a controllable pair of matrices (A;B) and a set 
 = f�1; :::; �ng, closed under complexconjugation, the well-known eigenvalue assignment problem in control theory is the problem of�nding a matrix F such that A + BF has the spectrum 
 (see Chen (1984), Kailath (1980),Szidarovszky and Bahill (1991), etc).Because of its importance, the problem has been very well-studied in both mathematics andcontrol literatures. Many methods exist: single-input and multi-input (Arnold and Datta (1990),Bhattacharyya and DeSouza (1982), Bru et al (1994a, 1994b), Datta (1987), Miminis and Paige(1981, 1988), Patel and Misra (1981), Petkov, Christov, and Konstantinov (1984, 1986), Tsui(1986), Varga (1981), etc.); robust eigenvalue assignment (Kautsky, Nichols, and Van Dooren(1985)); partial eigenvalue assignment (Datta and Saad (1991), Saad (1988)); parallel algorithms(Arnold (1992), Bru et al (1994c), Datta (1989), Datta (1991), Coutinho et al (1995), Datta andDatta (1986), etc.); and methods for second-order systems (Datta, Elhay, and Ram (1995), Chuand Datta (1995)). The backward-stability of some of these algorithms have been establishedby round o� error analysis (Cox and Moss (1989 and 1992), Miminis and Paige (1988)).We take another look at the single-input methods in this paper.In theory all the single-input algorithms produce the same solution (see Wonham (1979)).It is therefore natural to explore the relationships between these methods. We relate the QRmethods of Miminis and Paige (1981), Patel and Misra (1984), and Petkov-Christov and Kon-stantinov (1984) under one umbrella and then relate the recursive algorithm of Datta (1987) tothese results. Speci�cally, we prove a result that shows that all these methods are connectedby a simple property of QR iteration and the explicit closed form solution of the single-input



3eigenvalue assignment problem that can be obtained easily from the recursive algorithm.These results do not seem to have appeared in the literature before. The relationship allowsus to present the QR algorithms in an uni�ed framework through RQ factorizations of de
atedmatrices at each step. The uni�ed RQ reformulations of these algorithms are easier to understandand implement than the original algorithms.We also present a new algorithm based on the RQ formulation of the single-input recursivealgorithm. We show how this new algorithm di�ers from other QR algorithms, and establishbackward numerical stability of the algorithm through round-o� error analysis. In the course ofproving backward stability of this algorithm, we prove that any single-input eigenvalue assign-ment algorithm is backward stable if the associated Hessenberg-algorithm is backward stable.Finally, we present a detailed round-o� error analysis of the single-input recursive algorithm,which is most e�cient, and almost trivial to implement, but is assumed to be numericallysuspect. Our analysis shows that the stability of the method can not be guaranteed in general,but the method is reliable in the sense that we can get an indication, as the method is executed,when the results are suspect, and the indication can be obtained rather cheaply.The organization of this paper is as follows:In Section 2 we present an uni�ed RQ reformation of the three QR methods.In Section 3 we establish a relationship between these QR methods and the recursive algo-rithm.In Section 4, we present a new RQ-based algorithm and discuss the di�erences of this newalgorithm with the others.In Section 5 we present the round-o� analyses of the proposed algorithm and that of therecursive algorithm.Finally, in Section 6 we present some numerical experiments comparing some of the methods.2 Hessenberg Eigenvalue AssignmentThe methods to be discussed in this section have the following basic structure: the pair (A; b) is�rst transformed to a controller-Hessenberg form; the desired feedback is then computed for thereduced problem, and �nally the solution to the original problem is retrieved from the solutionof the reduced problem. Recall that for single-input systems, if the Hessenberg matrix in thecontroller-Hessenberg form is unreduced, then the system is controllable. The above can besummarized in the following algorithm template:



4Algorithm 2.1 A General Single Input AlgorithmInput: A 2 Rn�n; b 2 Rn, and 
 = f�1; �2; : : : ; �ngOutput: f 2 Rn such that �(A� bf t) = 
Step 1 Reduce the pair (A; b) to controller-Hessenberg form(H; �e1) = (PAP t; P b)Step 2 Compute k 2 Rn such that �(H � �e1kt) = 
Step 3 Compute f = P tkIf, in step 1 it is decided that the system is uncontrollable (i.e. if H is reduced or � = 0) andif those eigenvalues of A which cannot be moved (called uncontrollable modes) do not belong to
, then we must stop with failure: 
 is unassignable. If the uncontrollable modes are containedin 
, then we go to step 2 with the controllable part of H and the subset of 
 that remains tobe assigned. Since 
 is closed with respect to complex conjugation, then f will be real.We note here that the (orthogonal) matrix P determined by the reduction must be savedfor use in step 3. Also note that steps 1 and 3 are individually backward stableoperations. We will show in Section 5 that a method that is backward stable for Hessenbergeigenvalue assignment problem (Step 2) will be backward stable overall.Remarks: Several remarks on Algorithm 2.1 are in order.First. The reduction to Controller-Hessenberg form can be achieved in a numerically stableway using a stair-case algorithm (see, Boley (1981), Paige (1980) and Van Dooren and Verhaegen(1985), etc.).Second. Step 1 and Step 3 are the same in all the eigenvalue-assignment methods to bediscussed in this paper.The di�erent algorithms di�er in the way Step 2 is implemented. We will present belowthe RQ-formulation of several QR-based algorithms, and an recursive algorithm to implementStep 2. We will then present a new algorithm based on the RQ-formulation of the recursivealgorithm, thus presenting a link between these apparently di�erent algorithms.Third. In the section 5, we will prove that if Step 2 is implemented in a numerically stableway, then the overall algorithm will be numerically stable, thus reproving the numerical stabilityof several known QR-based algorithms and proving that of the new algorithm.



52.1 The Method of Miminis and Paige (Miminis and Paige (1981))The basic idea of the method is to apply the QR Algorithm with ultimate shifts to the ma-trix (with unknown �rst row) (H � �e1kt). If for simplicity we assume that the closed-loopeigenvalues are all real, then the method consists of n de
ation steps and a \backward sweep".Each de
ation step can be thought of as an RQ factorization of the matrix (Hi � �ie1kti � �iI).However, since ki is unknown, the process is not quite so straightforward. We �rst computeQi such that (Hi � �iI)Qti = Ri is upper triangular. Then Ui = (Hi � �ie1kti � �iI)Qti mustalso be upper triangular, and we want to choose ki such that Ui is singular. Now since Hi isunreduced, the only way that Ui can be singular is if Uie1 = 0, that is, if u(i)11 � et1Uie1 = 0.Write Qi = 24 yti~Qi 35 . Then 0 = Uie1 = (Hi � �ie1kti � �iI)yi;or �iktiyi = et1(Hi � �iI)yi = r(i)11 : (2.1)This is a key relation in the method, but it does not allow us to compute ki, so we continue. Tocomplete the RQ-step we premultiply by Qi and add back the �i to getQi(Hi � �ie1kti)Qti = 24 �i �0 ~Qi(Hi � �ie1kti) ~Qti 35 :Now if we de�ne Hi+1 = ~QiHi ~Qti; �i+1 = q(i)21 �i, and ki+1 = ~Qiki, then the ith de
ation step iscomplete; Hi+1 is unreduced, �i+1 is non-zero, and we can continue with the controllable pair(Hi+1; �i+1e1) and the unknown feedback vector ki+1 of dimension one less than that of ki.At the �nal de
ation step we have Hn � �ne1ktn 2 R1�1; i.e, kn = (Hn � �nI)=�n is a realnumber.The backward sweep consists of computing kn�1; kn�2; : : : ; k1 = k using the relationski+1 = ~Qiki (2.2)and from (2.1) ytiki = r(i)11 =�i: (2.3)Combining these equations we haveki = Qti0@ r(i)11 =�iki+1 1A ; i = n� 1; n� 2; : : : ; 1: (2.4)We summarize the preceding discussion as an algorithm:



6Algorithm 2.2 The RQ Formulation of Single-input Algorithm of Miminis and PaigeInput: H , an unreduced n� n Hessenberg matrix, � 6= 0,and 
 = f�1; �2; : : : ; �ngOutput: k such that �(H � �e1kt) = 
Step 1 Set H1 = H , and �1 = �For i = 1; 2; : : : ; n� 1 doCompute (Hi � �iI)Qti = Ri, the RQ factorization of (Hi � �iI)Compute �i = r(i)11 =�i and �i+1 = q(i)21 �iCompute Hi+1, where QiRi + �iI = 24 � �0 Hi+1 35EndStep 2 Compute kn = (Hn � �n)=�nFor i = n� 1; n� 2; : : : ; 1 doCompute ki = Qti0@ �iki+1 1AEndFlop-count: When implemented with implicit double steps, this algorithm takes about 56n3
ops. Combined with the 53n3 
ops required for the controller-Hessenberg reduction, the total
op count is about 52n3.2.2 The Method of Petkov, Christov and Konstantinov (Petkov, Chris-tov and Konstantinov (1984)).This method, like the Miminis-Paige method, is based on an ultimately shifted RQ step withimmediate de
ation. The only real di�erence between the two methods is how the matrices Qiare computed. In fact, we will show by the end of this section that the Qi obtained by thesemethods are essentially the same throughout the entire de
ation sequence. We will devote amajor portion of this section to an analysis of the RQ factorization (and therefore the de
ationstep) in the method of Petkov, Christov and Konstantinov.If � is an eigenvalue of the Hessenberg matrix (H � �e1kt), then there exists v 6= 0 such that(H � �I)v = �e1ktv: (2.5)



7Now partition (H � �I) and v as(H � �I) = 24 � �T c 35 and v = 24 ~vvk 35 ;where T 2 Rn�1�n�1 is upper triangular. Then from (2.5) we have [T c]v = 0, orT ~v = �vkc:SinceH is unreduced, T is nonsingular and vk is nonzero; so if we �x vk 6= 0, we can compute v byback-substitution. We now have an eigenvalue/eigenvector pair (�; v) of the matrix (H � �e1kt),and if we can compute an orthogonal matrix Q such that Qv = �e1 and Q(H � �I)Qt is aHessenberg matrix, then0 = (H � �e1kt � �I)v = (H � �e1kt � �I)�Qte1;or (H � �I)Qte1 = �(ktQte1)e1: (2.6)If we now write Q = 24 yt~Q 35, then (2.6) yields�kty = et1(H � �I)y:Inserting subscripts and continuing in the fashion of the last section, we see thatQi(Hi � �ie1kti)Qti = 24 �i �0 ~Qi(Hi � �ie1kti) ~Qti 35 :De�ne Hi+1 = ~QiHi ~Qti; �i+1 = q(i)21 �i, and ki+1 = ~Qiki. If Qi is unreduced, then Hi+1 is alsounreduced, �i is nonzero, and therefore the pair (Hi+1; �i+1e1) is controllable. This is entirelythe same situation as in the method of Miminis and Paige, and as such we can use the samebackward sweep to recover k = k1.We have not yet explained how to compute an orthogonal matrix Q such that Qv = �e1 andQ(H � �I)Qt is a Hessenberg matrix; the following lemma illustrates the construction.Lemma 2.1 Let Hv = �v, where H is an unreduced upper Hessenberg matrix. Let the Givensrotations Jk in the k and (k + 1)st planes be such that JiJi+1 � � � Jn�1v = (xti ; �i; 0)t for i =n� 1; n� 2; : : : ; 1, where xi 2 Ri�1�1 and �i 2 R. Then(H � �I)J tn�1J tn�2 � � �J t1 = R (2.7)is upper triangular.



8Proof: De�ne Mi = (H � �I)J tn�1J tn�2 � � � J ti and suppose thatMi = 2664 ki � �0 yti �0 0 Ri 3775 ;where yi 2 R2�1; Ri 2 Rn�i�n�i is upper triangular, and 24 ki �0 yti 35 is an unreduced upperHessenberg matrix of order i. We will show that 24 ki�1 �0 yti�1 35 is also an unreduced upperHessenberg matrix and that Ri�1 is upper triangular. Thus, by induction we will have (2.7).Now MiJ ti�1 = 2664 ki � �0 �yti �0 0 Ri 3775 ;and since (H � �I)v = 0 we must have that0 =Mi�1(Ji�1Ji � � � Jn�1v) =Mi�10BB@ xi�1�i�10 1CCA :Therefore �yti must be of the form �yti = (0; y) 2 R1�2, withMi�1 = 2664 ki�1 � �0 yti�1 �0 0 Ri�1 3775 ;Ri�1 upper triangular, and 24 ki�1 �0 yti�1 35unreduced upper Hessenberg. This completes the induction step; and since M1 is an unreducedupper Hessenberg matrix, the proof is complete.Quite simply, the rotations Ji that are de�ned by v provide the RQ factorization:(H � �I)J tn�1J tn�2 � � � J t1 = (H � �I)Qt = R.We summarize the Petkov-Christov-Konstantinov method:



9Algorithm 2.3 The RQ-Formulation of the Single Input Method of Petkov,Christov and KonstantinovInput: H , an unreduced n� n Hessenberg matrix, � 6= 0,and 
 = f�1; �2; : : : ; �ngOutput: k such that �(H � �e1kt) = 
Step 1 Set H1 = H , and �1 = �For i = 1; 2; : : : ; n� 1 doCompute (Hi � �iI)Qti = Ui, the RQ factorization of(Hi � �iI) by computing vi such that (Hi � �iI)vi = 
e1and then computing the rotations Ji such thatJ1J2 � � �Jn�i+1vi = �jjvijj2e1, and �nally settingQi = J1J2 � � �Jn�i+1Compute �i = et1(Hi � �iI)Qtie1=�i and �i+1 = q(i)21 �iCompute Hi+1, where QiUi + �iI = 24 � �0 Hi+1 35EndStep 2 Compute kn = (Hn � �n)=�nFor i = n� 1; n� 2; : : : ; 1 doCompute ki = Qti0@ �iki+1 1AEndFlop-count: If implemented with care, this algorithm takes about 53n3 
ops. When combinedwith the 53n3 
ops required for the controller-Hessenberg reduction, the total 
op count is about103 n3.2.3 The Method of Patel and Misra (Patel and Misra (1984)).We have now seen two methods based on an explicit RQ step with immediate de
ation. Itshould come as no surprise that an implicit RQ step is possible, and in order to handle complexpairs of eigenvalues with real arithmetic, an implicit double step is needed. Such a method wasproposed by (Patel and Misra (1984)). The method is similar to the method of Miminis and



10Paige (1982), but it includes an alternative to the \backward sweep", and is the �rst publisheddescription of the implicit double-step in the single-input eigenvalue assignment problem. Wewill outline an implicit single-step here.First, compute an orthogonal matrix Pi such that etn(Hi � �iI)P ti = �etn; then computeanother orthogonal matrix Ui such that UiPiHiP ti U ti is an upper Hessenberg matrix; �nally, setQi = UiPi. The matrix Ui \chases the bulge" up the subdiagonal of PiHiP ti . We are now in thefamiliar situation of computing ki such thatQi(Hi � �ie1kti)Qti = 24 �i �0 Hi+1 � �i+1e1kti+1 35 :If, as before, we set Qi = 24 yti~Qi 35 , then with �i � ktiyi, we must have�i = �i � h(i)11�iq(i)11 = h(i)21�iq(i)21 ;with the continuation Hi+1 = ~QiHi ~Qti; �i+1 = q(i)21 �i, and ki+1 = ~Qiki. After n such steps weexpect the usual backward sweep, but it is shown in Patel and Misra (1984) that this computationneed not be put o� that long: the backward sweepki = Qti0@ �iki+1 1A ; i = n� 1; n� 2; : : : ; 1is equivalent to the \forward update" Q̂ = I; k = 0 andkt = kt + �iyiQ̂; Q̂ = ~QiQ̂; i = 1; 2; : : : ; n� 1:Algorithm 2.4 The Single Input Algorithm of Patel and MisraInput: H , an unreduced n� n Hessenberg matrix, � 6= 0,and 
 = f�1; �2; : : : ; �ngOutput: k such that �(H � �e1kt) = 




11Step 1 Set H1 = H; �1 = �; Q̂ = I , and k = 0For i = 1; 2; : : : ; n� 1 doCompute Pi such that etn(Hi � �iI)P ti = �etnCompute Ui such that UiPiHiP ti U tiis an upper Hessenberg matrixSet Qi = 24 yti~Qi 35 = UiPiCompute � = et1(Hi � �iI)Qtie1=�iCompute �i+1 = q(i)21 �iCompute Hi+1, where QiHiQti = 24 � �0 Hi+1 35Compute k = k + �Q̂tytiCompute Q̂ = ~QiQ̂EndStep 2 Compute � = (Hn � �n)=�nCompute k = k + �Q̂tFlop-Count: If implemented with implicit double steps, this algorithm is the same asthe method of Miminis and Paige (1982), except for the forward update/backward sweep, whicheither way is O(n2) 
ops. Therefore, this method requires about 56n3 
ops. When combinedwith the 53n3 
ops required for the controller- Hessenberg reduction, the total 
op count is about52n3.2.4 A Recursive Algorithm (Datta (1987))We reproduce below the recursive algorithm of Datta (1987), which is apparently di�erent fromthe three just described, and show how this algorithm produces an explicit formula for thesingle-input feedback vector.In the next section, we will present an RQ-formulation of this method. This new RQ methodwill help elucidate the relationship between the other RQ methods and the explicit expressionfor the feedback vector obtained by the recursive formula.



12Algorithm 2.5 A Recursive Algorithm (Datta (1987))Input: H , an unreduced n� n Hessenberg matrix, � 6= 0,and 
 = f�1; �2; : : : ; �ngOutput: k such that �(H � �e1kt) = 
Step 1 Set l1 = enStep 2 For i = 1; 2; : : : ; n� 1 doCompute l̂i+1 = (Ht � �iI)liCompute li+1 = bi l̂i+1, where bi is chosenso that jjlijj 2 ( 12 ; 1], sayEndStep 3 Compute k = 1�l1n (Ht � �nI)lnFlop-count: This method requires only about 16n3 
ops. When combined with the 53n3
ops required for the controller-Hessenberg reduction, the total 
op count is about 116 n3. Givena system in controller-Hessenberg form, this method is more than �ve times as fast as the methodof Miminis and Paige. The assignment of complex pairs of eigenvalues in real arithmetic requiresa slight adjustment to the above method, but does not alter the operations count.A Closed-Form Solution of the Single-input EAPWe now show that this method yields an explicit closed-form solution for the single-input prob-lem. The recursion in step 2 above yields
li+1 = (Ht � �1I)(Ht � �2I) � � � (Ht � �iI)l1; (2.8)and including steps 1 and 3, (2.8) becomes�k = (Ht � �1I)(Ht � �2I) � � � (Ht � �nI)en; (2.9)where � = (�h21h32 � � �hn;n�1)�1. If �(x) = (x � �1)(x � �2) � � � (x � �n), then this will bewritten as kt = �etn�(H): (2.10)Since this solution is unique, it represents the Hessenberg formula for the single-input EAP.



132.5 Of Methods not DiscussedA. Varga (1981) proposed a method very di�erent from those considered here. It has largelybeen ignored by numerical linear algebraists because of a reduction of the original system tocontroller-Schur form (T = PAP t is block upper triangular with 1� 1 or 2� 2 diagonal blocks,and k = Pb is a \full" column vector, see Varga (1981) for details). It is argued that, besidesthe extra work involved, the method su�ers from the fact that possible illconditioning of theeigenvalues of the original system introduces unnecessary errors into the computation. Thesecriticisms, while entirely valid from an algorithmic perspective, may be unwarranted from amore global view. It may be that knowledge of the original spectra (provided by the controller-Schur form and not by the controller-Hessenberg form) is necessary for intelligent EigenvalueAssignment. In that case the information provided by the Schur decomposition might be usedin choosing 
. If the eigenvalues of the original system were found to be illconditioned, aHessenberg method might be preferable; but if not, continuing on with the method of Vargawould be more e�cient.There exist many methods for the Eigenvalue Assignment problem, and we have chosen todiscuss only those few with positive numerical attributes (e.g. stability and e�ciency). Methodsthat depend on Jordan or Frobenius forms are both expensive and unstable. Most closed-formsolutions for the feedback vector require such forms and hence lead to poor numerical methods.One of the most well known closed-form solutions is due to Ackermann (1972); while it is oftenheld as an example of how not to solve the EAP, we will see in the next section that each of themethods discussed in this paper are closely related to that solution.3 Relationship Between the Various MethodsIn this section we will explain the relationships between the methods of Miminis and Paige;Petkov, Christov, and Konstantinov; Patel and Misra; and Datta. We will show that theMiminis-Paige, Petkov-Christov-Konstantinov, and Patel-Misra methods yield the same data ateach de
ation step, the only di�erence being the technique used for an RQ factorization. Thenwe will present an RQ implementation of the recursive method that ties all four of the methodstogether.The Miminis-Paige, Petkov-Christov-Konstantinov, and Patel-Misra methods all have anRQ factorization at the heart of the de
ation step. With the original method of Miminis andPaige we have the explicit Hessenberg RQ factorization, with that of Petkov, Christov andKonstantinov we have a novel \triangular system" Hessenberg RQ factorization, and with the



14method of Patel and Misra we have the implicit Hessenberg RQ factorization.These methods all begin with the same data, the pair (H; �e1) and the closed-loop spectrum
; furthermore it is clear that each of the methods generates the i+1st set of data by applyingan RQ iteration step to the ith set of data. Thus, given the matrix Hi, the Implicit-Q Theorem(or the uniqueness of the RQ factorization) guarantees that whichever method we choose, theunreduced Hessenberg matrix Hi+1 is essentially (that is, up to a diagonal scaling of �1) thesame. One might question the uniqueness of the RQ factorization (or equivalently, the implicitRQ step) if �i is an eigenvalue of Hi. Indeed, in this case it is not unique, for while Qi iscompletely determined, the �rst row of Ri is underdetermined. But if we now note that thede
ation step is taken immediately in each of the methods, it is clear that the �rst row of Riplays no part in the computation. We have proven the following lemma:Lemma 3.1 In exact arithmetic, the methods of Miminis and Paige, Petkov, Christov andKonstantinov and Patel and Misra all generate the same data Hi, and Qi at each de
ation step,up to a sign scaling, for i = 1; 2; : : : ; n.The di�erences between these methods, at each step, depend only on �nite precision. Thediscussion above allows us to give a generic formulation of all of the QR-based single-inputalgorithms as follows:Algorithm 3.1 Generic RQ-based Single Input AlgorithmInput: H , an unreduced n� n Hessenberg matrix, � 6= 0,and 
 = f�1; �2; : : : ; �ngOutput: k such that �(H � �e1kt) = 
Step 1 Set H1 = H and �1 = �For i = 1; 2; : : : ; n� 1 doCompute Qi from a shifted RQ step with Hi and �i:~Hi = QiHiQtiCompute �i = ~h(i)21�iq(i)21 = �i�~h(i)11�iq(i)11Compute �i+1 = �iq(i)21Compute Hi+1, where ~Hi = 24 � �0 Hi+1 35End



15Step 2 Compute �n = �n�Hn�nStep 3 Compute kt = (�1; �2; : : : ; �n)Qn�1Qn�2 � � �Q1The manner of computing the RQ steps in this generic method is not speci�ed; an explicitlyshifted RQ step with Givens rotations yields the original method of Miminis-Paige, explicitlycomputing the RQ factors using a closed-loop eigenvector gives the method of Petkov-Christov-Konstantinov, and an implicit RQ step corresponds to the methods of Patel-Misra and Miminis-Paige. We also note that �i can be computed using either of the quantities given above, or if Riis available, as �i = r(i)11 =�i.4 A New RQ-based MethodWe now present a new RQ implementation of the recursive algorithm of Datta that will makeexplicit the connections between all of these methods and the explicit formula (2.10).While this method was discovered and proved in the context of the matrix equationHtL� LB = cetn;we can show its relationship with the often maligned formula of Ackermann. Ackermann (1972)showed that if �(x) = (x� �1)(x � �2) � � � (x � �n);then the unique solution to the EAP for the controllable pair (A; b) isf t = etnC�1�(A); (4.1)where C � h b; Ab; � � � An�1b i :If (H; �e1) = (PAP t; P b) is the controller-Hessenberg form of (A; b), then from (4.1)f tP t = etnC�1�(A)P t= etnC�1P t�(H)= etn(PC)�1�(H);where PC is an upper triangular matrix. If ��1 is the (n; n) element of PC, then etn(PC)�1 =�etn, and we see that the formula, kt = �etn�(H) is a Hessenberg case of Ackermann's formula(in fact ��1 = �Qn�1i=1 hi+1;i).



16The recursive algorithm is an extremely e�cient way to solve the Hessenberg Single Inputproblem, but as we will see in Chapter 6, backward stability cannot be guaranteed. Havingbeen aware of possible instabilities in the recursive formulation, Datta (1992) suggested thatthis method could be implemented using QR iterations as follows:Set H1 = HFor i = 1; 2; : : : ; n compute the QR stepQiRi := Hi � �iIHi+1 := RiQi + �iIThen it can be shown (Stewart [1972, 353]) that�(H) = Q1Q2 � � �QnRnRn�1 � � �R1;and setting Q = Q1Q2 � � �Qn and R = RnRn�1 � � �R1, formula (2.10) becomeskt = �etnQR:The di�culty of implementing this strategy is that the Ri need to be accumulated; this is bothexpensive and unstable.We now show how the method can be made computationally e�cient by using RQ factor-izations instead of the QR factorizations.Set H1 = HFor i = 1; 2; : : : ; n compute the RQ stepRiQi := Hi � �iIHi+1 := QiRi + �iIThis time �(H) = R1R2 � � �RnQnQn�1 � � �Q1; (4.2)and by setting Q = QnQn�1 � � �Q1 and R = R1R2 � � �Rn, we havekt = �etnRQ = ��etnQ;where � = Qni=1 r(i)nn. This is a much nicer situation! Furthermore, we will now show that it ispossible to \de
ate" the problem at each RQ step.Write Qi; i = 1; 2; : : : ; n as a product of Givens rotations Qi = J (i)1 J (i)2 � � �J (i)n�1, where J (i)kis a rotation in the k and k + 1 planes. ThenetnQ = etnJ (n)1 J (n)2 � � � J (n)n�1Qn�1Qn�2 � � �Q1= etnJ (n)n�1Qn�1Qn�2 � � �Q1= etnJ (n)n�1J (n�1)n�2 J (n�1)n�1 Qn�2Qn�3 � � �Q1...= etn(J (n)n�1)(J (n�1)n�2 J (n�1)n�1 ) � � � (J (2)1 J (2)2 � � �J (2)n�1)Q1; (4.3)



17or kt = ��etnQ̂nQ̂n�1 � � � Q̂1, where Q̂k � J (k)k�1J (k)k � � � J (k)n�1. Algorithmically we haveAlgorithm 4.1 A Proposed Single Input AlgorithmInput: H , an unreduced n� n Hessenberg matrix, � 6= 0,and 
 = f�1; �2; : : : ; �ngOutput: k such that �(H � �e1kt) = 
Step 1 Compute R1Q1 := H � �1I , the RQ factorization of H � �1ICompute H2 = Q1R1 + �1ISet Q = Q1 and � = r(1)nnStep 2 For i = 2; 3; : : : ; n� 1Compute RiQi := H � �iICompute Hi+1,where QiRi + �iI = 24 � �0 Hi+1 35Update Q := 24 I Qk 35QUpdate � := �r(i)n+2�i;n+2�i (r(i)n+2�i;n+2�i is the last element of Ri)EndStep 3 Update � := �(Hn � �n)Compute kt = ��etnQRemark: The RQ factorizations in this method can be implemented implicitly with adouble step, but as with the previous methods this has been omitted for the sake of clarity.Note also that there are no divisions in this method until � is computed in the last step, i.e. thetroublesome computation of �i = ~h(i)21�iq(i)21 = �i � ~h(i)11�iq(i)11 = r(i)11�iwhich appeared in the other methods does not appear here.Flop-count: Implemented using implicit double-steps with Q kept in factored form, thismethod requires about 56n3 
ops. When combined with the 53n3 
ops required for the controller-Hessenberg reduction, the total 
op count is about 52n3, the same as the the Miminis-Paige andPatel-Misra methods.



184.1 A Relationship Between the Proposed Method and other RQMethodsWe promised that this method would shed some light on the relationship between the other RQmethods and the closed-form solution (2.10). While the connection between this RQ methodand the closed-form solution is clear, we have yet to close the �nal link. There are two di�erencesbetween this method and the generic RQ method: (i) de
ation does not commence after the�rst iteration here as in the generic method, and (ii) the scalar �� in this method takes theplace of the vector xt = (�1; �2; : : : ; �n).When viewed from the perspective of the generic method, these two distinctions are theresult of transforming the vector xt into the vector ��etn, one step at a time.To see how this works let us consider an explicit RQ factorization of Hi, an unreducedHessenberg matrix of order k, say. In the generic method the RQ factorization e�ectively stopswhen the matrix HiQti is of the formHiQti = 24 A �0 T 35 ; (4.4)where A is 2 � 2 and T is upper triangular. In the proposed RQ method above, we are onede
ation step behind, so that one more rotation is needed to put A into triangular form. Thisrotation Vi will be such that HiQtiV ti is upper triangular; but it also rolls [�i; �i+1] into [0; 
], for[a21; a22] = [r(i)11 �i+1�i ; r(i+1)11 ]= �i+1[ r(i)11�i ; r(i+1)11�i+1 ]= �i+1[�i; �i+1]: (4.5)We have proven the following theorem:Theorem 4.1 The generic RQ method generates the orthogonal matrices Qi that satisfykt = (�1; �2; : : : ; �n)QnQn�1 � � �Q1;while the proposed method generates the orthogonal matrices Pi = QiVi such thatkt = ��etnPnPn�1 � � �P1;where (�1; �2; : : : ; �n)V1V2 � � �Vn�1 = ��etnand Vi is a rotation in the planes i and i+ 1.



195 Error AnalysisA systematic round-o� error analysis of most of the existing and currently used algorithms incontrol theory is lacking. As far as algorithms for the EAP is concerned, round-o� error analysesof only the methods of Miminis and Paige and Petkov, Christov and Konstantinov have beenpresented (Cox and Moss (1989 and 1992), Miminis and Paige (1988)).In this section we give a detailed round-o� error analysis of our proposed single-input al-gorithm (Algorithm 4.1) described in Section 4, and prove that it is backward stable. In thecourse of this proof we show that any algorithm for the EAP is backward stable if it is backwardstable for the corresponding Hessenberg problem. We then give a round-o� error analysis of therecursive algorithm. Our analysis shows that the latter, while it may not be backward stable,is reliable in the sense that we can detect precisely when the results are suspect.5.1 An Error Analysis of the Proposed Single Input MethodThe backward error analysis of eigenvalue assignment methods has turned out to be a non-trivial task. For example, the RQ-based methods of Section 2 are straightforward adaptationsof the Hessenberg QR iteration, and while a backward error analysis for the QR iteration isquite simple, that for the eigenvalue assignment methods is not (see e.g. Cox and Moss (1989or 1992)). The major di�erence is that backward error analysis for the QR iteration in theeigenvalue problem is naturally focused on showing that the next iterate is (exactly) similar toa matrix that is close to the current iterate, while for eigenvalue assignment we cannot, in astraightforward way, use similarity as a tool. In order to simplify the analysis, we show thatbackward stability is achieved if one can solve the Hessenberg single-input eigenvalue assignmentproblem in a backward stable manner. First we prove that Algorithm 4.1 is backward stable.Theorem 5.1 The RQ-based single-input eigenvalue assignment (Algorithm 4.1) is backwardstable, i.e. it computes a feedback k such that�(H + �H � (� + ��)e1(k + �k)t) = 
;where �H, ��, and �k are small.Proof: Let �H1 = H1 = H , and let �Hi be the computed iterate at the ith QR step. Let �Qibe the computed transformation at each step. Then we have from basic error analysis (see e.g.[Wilkinson (1965), 110-160]) that there exists an orthogonal matrix Q1 such that�H2 = Q1(H1 + �H1)Qt1; �Q1 +E1 = Q1;



20where jj�H1jjF � f(n)umaxfjjH1jjF ; j�ijg, and jjE1jjF � g(n)u, where g and f are modestfunctions of n, practically behaving like cn, with c a constant of order unity. Note that with animplicit double RQ step, the upper bound on jj�H1jjF is independent of �i. Now iterating onthese results leads to �Hn = Pn�1(H1 + �H)P tn�1; �Pn�1 +E = Pn�1; (5.1)where Pn�1 = Qn�1Qn�2 � � �Q1, �Pn�1 = fl( �Qn�1 �Qn�2 � � � �Q1). Here, jj�H jjF � unf(n)maxfjjH jjF ; j�kj; k = 1; 2; : : : ; ng and jjEjjF � ng(n)u. These bounds are pessimistic now,because of the maximum over j�kj and because we have not considered the fact that Hi and Qiare actually (n� i+1)� (n� i+1), not n� n. Now with P = Pn, the feedback k is computedas kt = 
etnP , so up to the scalar 
, we are done. We have shown that etn( �P +E) is exact for amatrix H + �H , where jjetnEjj � ng(n)u and jj�H jj � unf(n) maxfjjH jjF ; j�kjg. We now showthat 
 can be computed in a backward stable fashion, thereby completing the proof.Remember that 
 = ��, where � = Qni=1 ri, � = (Qni=1 �i)�1, �i = hi;i�1, �0 = �, andri = r(i)nn is the (n; n) entry of Ri. Now let �ri be the computed value of ri, where Ri is exact forthe computed matrix �Hi. Then the errors not accounted for in jj�H jj can be expressed as�ri = �qh2n;n�1(1 + �1) + [(hnn � �i)(1 + �2)]2(1 + �3)(1 + �4);where j�j j < u. Write this as �ri = ri(1 + �i), where j�j � 52u. Now �
 = fl(����) so that�
 = nYi=1 ri(1 + �i)(1 + �i)�i(1 + �i) ;where j�ij; j�ij � u, i = 1; 2; : : : ; n. Therefore,
 � �
 = 
 nYi=1 (1 + �i)(1 + �i)(1 + �i) ;and if we assume that nu < 0:1, then conservativelyj
 � �
j � 5nuj
j:If we write 
 = 
(�;H), then our result reads�
 = 
(� + �̂�;H + �H);where �H is the same as in (5.1), and j�̂�j � 5nu. Finally, the error from the scalar-vectoroperation kt = 
etnP can be thrown back into �, yielding a computed feedback �k such that�k = �
etnE + k(� + ��;H + �H);



21with j��j � 5nu:Remark: The popular de�nition for backward stability is not used here for a verysimple reason. Consider proving that the computation of a Householder re
ection is backwardstable. One must show that the computed matrix is exact for a problem close to the original.This is impossible, even for the n = 2 case, for the computed matrix is almost always notan orthogonal matrix. This di�culty is removed by adopting the more general de�nition ofStewart [1972, p.76], which requires that the computed solution be \near the exact solution of aslightly perturbed problem." Datta (1995, p.87) has called such stability mild-stability. In theabove proof, the quantity �
etnE is the di�erence between the computed solution and the exactsolution for the perturbed problem, and with k � k(� + ��;H + �H) we have (pessimistically)k�k � kk=kkk � cn2u, where c is a constant of order unity.Theorem 5.2 The following 3-step procedure for solving the controllable single-input EAP for(A; b;
), is backward stable if step 2 is backward stable.Step 1 Using the method of Householder, reduce the pair (A; b)to the controller-Hessenberg form (H; r) = (QAQt; Qb).Step 2 Compute the solution k to the EAP for (H; r;
).Step 3 Compute f = Qtk.Proof: Let �H , �r, and �Q be the computed versions of H , r, and Q respectively. There exists anorthogonal matrix Q̂ such thatQ̂� �Q = EQ; Q̂AQ̂t = �H + ÊH and Q̂b = �r + �̂r (5.2)where kEQk � uy0(n); kÊHk � 2cnukAk; �̂r � cnukbk and y0 behaves, for all practicalpurposes, like cn3=2, with c of order 10 [Wilkinson (1965), 160-161].Let �k be the computed solution to the reduced problem ( �H; �r;
). Denote by �f the computedsolution to the original problem; then�f � 
( �Qt�k) = �Qt�k + ��f ; (5.3)where k��fk � nuk�kk. Substituting (5.2) into (5.3), we have�f = Q̂t(�k + �̂k) (5.4)Here �̂k = ��f �EtQ�k, and so k�̂kk � uny1(n)k�kk; y1(n) = y0(n) + n:Now by hypothesis, there exist ( ~H; ~r) close to ( �H; �r), and ~k close to �k, such that ~k is theexact solution to the EAP with input ( ~H; ~r;
). Write �H = ~H + ~EH ; �r = ~r+~�r and �k = ~k+~�k;



22where k ~EHk � uzHkAk; k~�rk � uzrkbk; and k~�kk � uzkk�kk:Finally, taking �A � Q̂t( ~EH + ÊH)Q̂; �b � �Q̂t(~�r + �̂r) and and � �f = �Q̂t(~�k + �̂k); we haveA+ �A� (b+ �b)( �f + � �f)t = Q̂t( ~H � ~b~kt)Q̂; (5.5)with k�Ak � ukAk(zH + 2cn); k�bk � ukbk(zr + cn), and k�fk � uk�kk(zk + y1(n)):Remark: Since our proposed Hessenberg algorithm is backward stable, the above theoremguarantees that our method is backward stable for the pair (A; b).5.2 An Error Analysis of the Recursive Single-Input MethodRecall that this method computes a matrix L and a vector k such that HL�L� = ketn. A carefullook at the iteration reveals that the forward error has a special form. De�ne the polynomials�j;k for j � k by �j;k(x) = (x� �j)(x� �j+1) � � � (x� �k):Theorem 5.3 Let �� �f be the computed solution to the single-input eigenvalue assignment prob-lem for (H; �e1;
). If �f is the exact solution, then�� �f � �f = nXj=1 �j;n(H)�j : (5.6)Proof: Let �li be the computed value of the ith column of L. De�ne �i by �li+1 = (H��iI)�li+�i.Since �l1 = l1, we must have that �l2 = l2 + �2; suppose �li = li +Pi�1j=1 �j;i�1(H)�j . Then�li+1 = (H � �iI)�li + �i= (H � �i)(li +Pi�1j=1 �j�j;i�1(H)) + �i= li+1 +Pij=1 �j;i(H))�j :Now �� �f = �ln+1, and therefore �� �f = ln+1 + nXj=1 �j;n(H))�j ;or �� �f � �f = nXj=1 �j;n(H))�j :The �j can easily be bounded; for example if a machine base scaling is used to normalize �lj ,then it is simple to show that jj�j jjF � �mnujjH � �j jjF ;



23where �m is the base. Unfortunately, not much can be said about backward stability from aresult like this. It is not a necessarily bad result either, for the closed-form expression for thesingle-input feedback is �etn�1;n(H).It is possible to shed some light on the stability of this method by looking at the �j in adi�erent way.Theorem 5.4 Let E = [�1; �2; : : : ; �n] and let �L = ��l1; �l2 : : : ; �ln�. Then �� �f solves (exactly) thesingle-input EAP for the perturbed system (H �E �L�1; �e1;
), where the �i are the same as intheorem 5.3.Proof: Notice that as de�ned �L satis�es the Sylvester equationH �L� �L� = E + �� �fetn;where � = diag(�i). Since �L is nonsingular by construction, we can solve the perturbed equation(H +�H)�L� �L� = E + �� �fetn (5.7)for �H . This yields ��H = E �L�1, and by satisfying (5.7), �� �f solves the EAP for (H +�H; �e1;
):5.3 Remarks on Numerical Stability and Reliability>From the above result we cannot say that the method is backward stable. We have simplyprovided an upper bound on the size of the ball around the initial data, inside which there exist(H +�H; � + ��) for which the computed solution is exact. If jj�H jj could be bounded aboveby a small quantity that was relatively independent of the initial data, then the method wouldbe backward stable. But Theorem 5.4 does allow one to say precisely when the results from themethod are suspect. It is clear that jjEjj is always small if the iterates are normalized every fewsteps, so that all of the backward error information is contained in �L�1. Since �L is triangular,it is possible to estimate jj�L�1jj rather cheaply, even as the iteration proceeds.The matrix L yields a bit more information about the eigenvalue assignment problem. Ifthe closed-loop eigenvalue problem is poorly conditioned, then we cannot expect the closed-loopeigenvalues to be correct (or even well-de�ned), even when the feedback f is computed to veryhigh accuracy. Now we know from construction that the method yields matrices L and � suchthat H � �e1f t = L�L�1;



24where � is bidiagonal. It is easy to show that if the closed-loop eigenvalues are distinct, then �is diagonalized by the matrix X = [xij ], wherexij =8>><>>: 1; i = jQj�1k=1(�k � �j)�1; j > i0; j < iTherefore, the closed-loop matrix is diagonalized by the matrix P = L�1X which is convenientlyfactorized into triangular factors, with X a unit upper triangular matrix. The inverse of P isgiven by P�1 = X�1L, where X�1 = [yij ], andyij = 8>><>>: 1; i = jQjk=i+1(�j � �k)�1; j > i0; j < iThis leads us to an upper bound on the eigencondition of the closed-loop matrixkPkkP�1k = kL�1XkkX�1Lk � kXkkX�1kkLkkL�1k:The triangular factors facilitate an O(n2) LINPACK-like condition estimator of P =L�1X. We cannot say that whenever L is illconditioned, the closed-loop eigenvalues are ill-conditioned, for L is simply a factor of P ; but computational experience has shown that it is agood indicator.Numerical ExperimentsWe include here several computational experiments that compare the accuracy of the proposedmethod (RQ) with that of Miminis & Paige (MP) and Datta. The M&P method was chosen asrepresentative of the QR-based methods primarily because of the matlab script SEVAS, writtenby Miminis, and available to the public (Miminis 1991). All computations were done on aSun Sparcstation LX. Matlab, version 4.2C, was used to compute the feedback vector usingthe m-�les SEVAS.m for the MP method, SIPPD.m for Datta's method, and SIPPRQ.m forthe proposed method (SIPPD.m and SIPPRQ.m available from Arnold). Matlab computationsare double precision with a machine epsilon of � = 2�52. In all tests an \exact" feedback wascomputed using the method of Datta, coded in D. Bailey's multi-precision fortran (1992) with a500 decimal digit 
oating point representation. Datta's method was chosen for its e�ciency andease of implementation. In all of the experiments, the initial data is in controller-Hessenbergform. The computation of an exact solution allows one to avoid the eigenvalue computation



25(and the associated errors) necessary in the common practice of measuring error by computingthe eigenvalues of H , removing its �rst row, and then assigning the original eigenvalues to theperturbed matrix.For a backward stable method, one expects the size of the error in the computed solutionto be roughly equal to the product of the machine epsilon and the condition number of theproblem. We have included in these tests the computation of a relative condition estimator (theestimator ��, given in (Arnold 1992), requires about 115 the work of either of the methods beingcompared). We would like to emphasize two points here: �rst, we are measuring the error inthe computed feedback, not in the closed-loop eigenvalues; and second, this condition estimatoris neither a lower nor upper bound on the true condition number, which, while computable,requires at least O(n4) 
ops for the general case.For all of these experiments the Matlab code that generates the test data, and the seeds forthe random number generator are available from Arnold.In the �rst experiment, a random matrix with elements uniformly distributed in [�1; 1] wasgenerated using Matlab's RAND function. This matrix was then reduced to Hessenberg formand its elements rounded to 15 binary digits, resulting in the system matrix H . Next, a unitrandom vector, r, was generated and the eigenvalues of the matrix H � e1rt computed. Theseeigenvalues, rounded to 15 binary digits, become the desired closed-loop poles. For a relativelywell conditioned eigenvalue assignment problem, we expect the exact feedback to have normnear unity.Thirty such runs were performed on matrices of size n = 100. The results are decribed in�gure 1 and table 1. Figure 1 is a scatter plot showing � log10(ec), where ec = kf�fck=kfk, f isthe exact feedback and fc is the feedback computed by one of the methods being compared. Thex-axis serves only to label the data points; each integer k, from 1 to 30 represents a data point,and each data point consists of 4 quantities, namely the predicted error and the error for each ofthe 3 methods being compared. The y-axis in the �gure represents the (negative of) the numberof correct digits in the computation, thus a smaller (closer to �1) y-component, represents asmaller error. In order to make the plot easier to read the data is sorted by the predicted error,���, and the predicted error is plotted as a continuous curve by linear interpolation. Note thateven for problems of size n = 100 (considered large for single-input eigenvalue assignment), thefeedback vector is computed to high relatively accuracy by the backward stable methods. Thisobservation supports the argument that the generically dismal behavior of eigenvalue assignmentfor large n is not caused by innacurate feedback, but is primarily attributable to the conditioningof the closed-loop eigenvalues relative to the size of the feedback vector.



26Table 1 provides some statistics associated with the data shown in �gure 1. The quantity\digits accurate" is simply � log10(ec), which is approximately the number of correct decimaldigits. The least accurate result in the sample is reported under \Minimum" accurate digits,and the average number of correct digits in the sample is reported under \Average". In anattempt to remove the \bias" of conditioning from the statistics, a backward error statisticis also computed as eb = ef=�d�. The justi�cation for this statistic is that given a backwardstable method, the true condition number �, and a small (relative to 1=�) machine epsilon �, thequantity ef=� should be approximately bounded by �. Thus, we de�ne the quantity \backwarddigits accurate" as � log10(eb). The least accurate sample with respect to this scaled error isreported as \Backward Minimum", and the average of the scaled errors is reported as \BackwardAverage".Table 1 Summary Statistics of Relative Errors for 30 Randomly Generated Systems of order 100Accurate DigitsMethod Average Minimum Backward Average Backward MinimumM&P 12.5 11.9 16.0 15.1RQ 12.7 11.9 16.1 15.6Datta 8.33 7.30 11.8 10.6The next experiment is constructed as the �rst, but with n = 20, and with illconditioningintroduced by uniformly scaling the subdiagonal entries of H so that the product of theseentries is between 1�10�10 and unity. Again, we include a scatter plot for 100 runs, and a tablesummarizing the results; these are given in �gure 2 and table 2, respectively.Table 2 Summary Statistics of Relative Errors for 100 Randomly Generated Systems of order 20of Varying Degrees of IllconditioningAccurate DigitsMethod Minimum Average Backward Average Backward MinimumM&P 5.31 10.8 16.0 14.5RQ 5.50 10.8 16.0 14.5Datta 5.21 10.8 16.0 13.9The last experiment is constructed as the �rst, but with the Hessenberg matrix H always



27set to (see Miminis 1981) H = 26666666664 �1 �1 �1 � � � �11 �1 �1 � � � �10 1 �1 � � � �1... . . . . . . ...0 � � � 0 1 1
37777777775 :A perturbation on the order of 21�n makes this system uncontrollable. The system size variedfrom n = 3 to n = 32, and one sample was taken for each n. In �gure 3, we display the errorsas a function of n, and as such, the data are not sorted.Table 3 Summary Statistics of Relative Errors for Example 3 of orders 3 to 32Accurate DigitsMethod Average Minimum Backward Average Backward MinimumM&P 8.52 1.22 16.1 15.5RQ 8.48 1.67 16.1 15.4Datta 9.16 2.18 16.7 15.5Summary and ConclusionsIn this paper, we have considered various computational aspects of the single-input eigenvalueassignment problem in control theory. We summarize the results of the paper below.I. We have built a framework around which the QR-based methods are all special cases. Wehave found that these apparently di�erent methods di�er only on how the RQ decompo-sitions are computed.II. We have proposed a new method based on the RQ formulation of the recursive algorithmof Datta (1987). An intimate relationship of the latter with the other QR methods hasbeen exposed via an explicit formula of the feedback vector obtained from the recursivealgorithm.III. We have proved that the proposed algorithm is backward stable by a round-o� erroranalysis. A more general theorem obtained in this context shows that an algorithm isbackward stable if the associated Hessenberg-algorithm is stable. It remains to see if thestability of the other QR algorithms can be reproved from the relationship mentioned inI.
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31CAPTIONS FOR FIGURES:Figure 1: Scatter plot for 30 problems of size 100. log10(ec) is (the negative of) the number ofcorrect decimal digits in the computed feedback. The predicted error is given by the \continu-ous" curve, Datta's method is represented by '*', MP by 'o', and the RQ method by 'x'.Figure 2: Scatter plot for 100 problems of size 20. log10(ec) is (the negative of) the number ofcorrect decimal digits in the computed feedback. The predicted error is given by the \continu-ous" curve, Datta's method is represented by '*', MP by 'o', and the RQ method by 'x'.Figure 3: Plot for 29 problems of size n = 3 to n = 32. Now the x-axis represents the size of thesystem, and the data has not been sorted. log10(ec) is (the negative of) the number of correctdecimal digits in the computed feedback. The predicted error is given by the \continuous" curve,Datta's method is represented by '*', MP by 'o', and the RQ method by 'x'.


